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A. Implementation details

We implemented our model using Pytorch (the code
will be shared). The networks ® in eq. (4) and ¥ (6)
have the same architecture as in C3DPO [4]. In particu-
lar, they first map the input to a 1024-dimensional vector
with a fully-connected layer followed by 6 residual 3-layer
MLPs. The blocks have the architecture 1024-256-256—
1024, each layer followed by BatchNorm and ReL.U. The
network parameters are optimised with SGD with momen-
tum and weight decay. Training runs for 20 epochs on Hu-
man 3.6M, for 100 epochs on UP-3D, 200 epochs for Stan-
ford Dogs, and 1000 epochs for the small LVIS categories,
starting with the learning rate 0.003 and decreasing 10 times
after 80% of epochs have passed. The momentum coeffi-
cient is 0.99 and weight decay to 0.001. The network takes
sparse keypoints and is thus lean on memory compared to
convolutional neural networks, which have to maintain fea-
ture maps, thus a batch size of 512 can be used with a 16 GB
GPU. A forward pass for this batch size takes 0.5 seconds.

To project the predicted 3D shape back to the image
plane in loss (5), we define 7 as orthographic projection,
although the method allows using perspective projection as
long as camera intrinsics are known. The input keypoints Y
are zero-centered before passing to P.

The hyperparameters were set to the following values:
the number of latent parts M in the segmentation model was
set to 10; segmentation model initialisation parameter & =
32, weights of the loss functions in eq. (9) are: Weptropy =
0.001, Warap = 0.3, Weanon = 0.1.

B. Generating keypoints for LVIS

For reconstruction of humans, we pre-process data with
DensePose [1] to obtain UV coordinates defining the cor-
respondences to the template mesh, and convert them to
2D keypoints corresponding to template mesh vertices as
described in Section 3.1. For animals we instead use pre-
trained CSE models [2] to obtain the per-pixel descriptors
from the joint embedding space with category-specific tem-
plate mesh surface. For each pixel within the object mask,
we find the closest template mesh vertex in the embedding

space. Let the set of pixels j that were matched to the ver-
tex ¢ of the template be

M; ={j :i=argmin, |e; —ey||}, (1)

where e; and e, are the embeddings of the j-th pixel and
1'-th vertex, respectively. Then, all vertices that have been
matched to at least one pixel, i.e. M; # (), are considered
visible. For each visible vertex, we find the corresponding
2D keypoint location as the mean coordinate of the pixels
matched to it: y; = E;c aq; pj, Where p; are the coordinates
in the pixel grid. This way, we ensure that all occluded
surface points are marked as invisible in the DensePose 3D
mnput.

C. Heteroscedastic reprojection loss

The annotation by CSE [2] trained on LVIS is quite noisy
due to small dataset size and high amount of noise and oc-
clusions. When fitting the model, it is generally important
to use a robust loss such as L1 or Huber (we use pseudo-
Huber loss in this paper wherever the norm is not explicitly
specified). For CSE annotation specifically, we found im-
portant to predict the keypoint-specific variance to weigh
its contribution to the loss.

To properly account for variance, we generalise L1 loss
in correspondence with the maximum likelihood estimation
theory similar to what Novotny et al. [3] did for L2 loss.
First, note that L1 loss is proportional to a shifted negative
log-likelihood of Laplacian distribution of the residual’s L1
norm, given constant scale parameter b. In the heteroscedas-
tic version, we do not fix those additive and multiplicative
terms and consider the full NLL:
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For numerical stability, the denominator is clipped, and

the constant term is removed, which brings us to the follow-

ing formulation:

—logp(yly,b) = log(20) + (2)

»Crep(yv y)

Efep(ﬁaya b) =logb+ max{b, b}’
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Figure 1: Reconstruction quality w.r.t. the noise for different
sparsity.

where by is set to 0.1, and Ly, (9, y) is a pseudo-Huber
loss €(v/1+ (Jly — g|l/€)?> — 1), which smoothly approxi-
mates the L1 loss.

Finally, the per-keypoint uncertainty by, is also predicted
by the model based on keypoint’s identity and its predicted
local pose. We train a new branch that takes for each key-
point £ its LBO descriptor concatenated with the predicted
transformation of the corresponding template vertex. It
comprises a 2-layer MLP topped with softplus. The LBO
descriptor identifies the keypoint in a smooth way, while the
transformation can aid uncerainty prediction because the 2D
projection of the variance depends on the angle between the
surface element and the camera ray.

D. Data and model for dogs

Human shape models like SMPL combine linear blend-
shapes with linear blend skinning; the former is responsible
for modelling the body type, while the letter for articula-
tion. While we can do the same in our model, we found that
for humans it did not yield any improvement. The varia-
tion in the shape of dogs across breeds is in contrast huge,
e.g. the body lenght to leg lenght ratio is different for great
danes versus dachshunds. To model this shape variations,
we learn a set of 5 blendshapes and apply them to the tem-
plate mesh before posing it. The blendshapes are learned as
a vertex-wise function of the LBO basis, in the same way
as in our no-parts baseline described in Section 4.3. This
parametrisation of blendshapes as a linear function of LBO
descriptors again helps to achieve invariance to remeshing
and avoid overfitting.

When generating the dataset, we remove cases where
less than 10% of the template surface area is visible because
this usually results in poor SMAL fits.

E. Robustness of training

DP3D training relies on roughly correct DensePose pre-
dictions. In case DensePose failed (e.g. due to occlusions),
our model would not be able to recover. Here we investi-
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Figure 2: Reconstruction quality w.r.t. the rate of removed
legs.

gate how the training is robust to different kinds of noise
added to synthetic UP-3D. First, we simulate the case of
manual annotations by adding Gaussian noise to 2D key-
points and marking some portions of them as invisible. Fig-
ure | shows that adding uncorrelated Gaussian noise is not
harmful as long as keypoints are relatively dense, but it be-
comes a problem once the location of 80%+ of projected
keypoints is unknown. Second, in Figure 2, we marked in-
visible the whole lower half of the body (in the canonical
orientation) for a certain proportion of training instances.
As expected, the method is less robust to occlusions than to
Gaussian noise.

F. More qualitative results

See more results in comparison to baselines in Figures 3
to 6.

References

[1] Riza Alp Giiler, Natalia Neverova, and lasonas Kokkinos.
DensePose: Dense human pose estimation in the wild. In
Proc. CVPR, 2018. 1

[2] Natalia Neverova, David Novotny, and Andrea Vedaldi. Con-
tinuous surface embeddings. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2020. 1

[3] David Novotny, Diane Larlus, and Andrea Vedaldi. Captur-
ing the geometry of object categories from video supervision.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2018. 1

[4] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia
Neverova, and Andrea Vedaldi. C3DPO: Canonical 3D Pose
Networks for Non-Rigid Structure From Motion. In Int. Conf.
Comput. Vis., 2019. 1,4, 5



w/0 parts 4

w/o parts
w/o parts
w/o p@s

DP3D (ours)
DP3D (ours)
DP3D (ours)

@)
=
E
S
=}
g}
A
a

w/o parts
w/0 parts

w/0 parts
w/o parts

DP3D (ours)
DP3D (ours)
DP3D (ours)

DP3D (ours)

Figure 3: Qualitative evaluation on LVIS. Each of the rows contains, from top to bottom: input image and keypoints, the
reconstruction with the linear model instead of parts segmentation, and of the proposed method.
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Figure 4: Qualitative evaluation on Human 3.6M. From top to bottom: input image and keypoints, the reconstruction of
C3DPO [4], of DensePose 3D without the ARAP loss (7), without the canonicalisation loss (6), without the entropy loss (8),
with the linear model instead of parts segmentation, and of the full proposed method.
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Figure 5: Qualitative evaluation on 3DPW. From top to bottom: input image and keypoints, the following rows show
the reconstruction of C3DPO [4], the results of DP3D without corresponding losses, with the linear model instead of parts
segmentation, and of the full proposed method.
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Figure 6: Results on Stanford Dogs. The first row shows input keypoints obtained by projecting SMPL fits showed in the
last row, the following rows show the results of DP3D without corresponding losses, of the no-parts baseline and of our
reconstruction from the camera’s and from an alternative viewpoint, the last row color-codes errors on the “ground-truth”

mesh.
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