
Supplementary Material: What You Can Learn by Staring at a Blank Wall

1. Sample Scenes in the Dataset

In Figure 1, we show a small subset of the observed
scenes and a sequence of amplified signal observed in that
sequence. Please refer to the dataset available at wallcam-
era.csail.mit.edu.

2. Neural Network Architectures

We present the network architectures and training proce-
dure used for the two tasks.

2.1. Classification of the number of people

The input to the neural network is a horizontal space-
time plot of dimension 64×256×3, corresponding to a 256-
frame RGB video downsampled to 64 pixels in width. We
use a total of 5 convolutional blocks followed by a shallow
2-layer fully connected network.

In the first four convolutional blocks, each convolution
uses kernel size of 5×5, stride of 1, and uses zero-padding.
The feature channel count in every intermediate layer is 64.
The convolution in each block is followed by a leaky-ReLU
non-linearity (with negative slope of 0.1) [3], and a 2 × 2
max-pooling layer to reduce the spatial and temporal di-
mensions. We apply batch normalization to the output of
each convolution [1].

The fifth convolutional block is similar to the preceding
ones, but has a convolution kernel size of 4 × 4 with no
padding. This reduces the spatial dimension to 1 and tem-
poral dimension to 13 time instants. This is the temporal
summary of the space-time plot.

These 13 dimensional feature vectors are collapsed using
a max-pooling operation over the time dimension, resulting
in a 64-dimensional feature vector. This vector is the input
to the linear layer followed by a leaky-ReLU, followed by a
final linear layer which outputs a vector with 3 values. We
apply the softmax function to the three-dimensional output
to get the probabilities for the three classes (0, 1, and 2 per-
sons).

2.2. Activity Recognition

The input to the neural network are both horizontal and
vertical space-time plots corresponding to the same video
input of 256 frames. Each space-time plot is of dimension

64 × 256 × 3. We have two initial branches, one to pro-
cess each of the horizontal and vertical space-time plots.
Each branch consists of the 5 convolutional blocks similar
to the initial part of the network used for classifying the
number of people, outputting a vector of spatial dimension
1 and temporal dimension 13. We then perform a max-
pool operation over the time dimension, resulting in 64-
dimensional feature vector for each branch. We further con-
catenate these two 64-dimensional feature vectors to get a
128-dimensional representation for both the horizontal and
vertical space-time plot. This 128-dimensional vector is in-
put to a linear layer, which outputs a 64-dimensional vector
followed by leaky-ReLU. This is followed by another lin-
ear layer which outputs a 32-dimensional vector, followed
by a leaky-ReLU layer. Finally, we use this 32-dimensional
vector to output raw scores for the 5 classes using an output
linear layer.

For both networks, we use standard cross-entropy loss
and optimize using RMSProp [4] with a learning rate of
1e-3.

3. Derivations of the SNR Formulas
We present the derivations for the formulas used in Sec-

tion 6.3 of the main document.

3.1. Power of the Radiance Signal

As described in the main text, we consider an idealized
scene, where we are observing a diffuse wall of albedo
(color) α, surrounded by a static and constant-colored en-
vironment from where the incident radiance is Ls. Facing
the wall is a person at distance d, of approximately circular
shape, of radius r and area A = πr2 (as projected on the
wall). The radiance from the person is Lp.

The rendering equation [2] predicts that the radiance Lo
observed from the wall towards the camera, at the point x
perpendicular to the person, is

Lo(x, ωo) =

∫
Ω

Li(x, ωi)f(x, ωi, ωo) cos ωi dωi. (1)

Here, Ω is the hemisphere of directions ωi surrounding the
point x, and Li is the hemispherical incident radiance to-
wards that point. f is the reflectance function (BRDF) that
indicates the transmission of light between any two direc-
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Figure 1: Observed scenes and a sequence of the amplified signal as one person walks in the hidden scene.

tion. For our diffuse (Lambertian) wall, the BRDF f is sim-
ply α/π. The incident radiance Li(ωi) is Ls in directions
that see the environment, and Lp in the regions that are oc-
cluded by the person.

For the simple scene described above, the rendering
equation becomes

Lo(x, ωo) =
α

π

∫
Ω

[1p(ω)Lp+(1−1p(ω))Ls]cos ωi dωi,

(2)

where 1p is a binary indicator function that corresponds to
directions covered by the person, and 1− 1p is its comple-

ment, i.e. the indicator for directions covered by the back-
ground. This rearranges to

Lo(x, ωo) = αLp

∫
Ω

1p(ω)
cos ωi
π

dωi+

αLs

(
1−

∫
Ω

1p(ω)
cos ωi
π

dωi

)
, (3)

where the integral (note that it is the same in both two terms)
represents the fraction that the person occupies of the pro-
jected unit hemisphere. It can be computed analytically as
follows.



First, by elementary geometry we see that the person
subtends a circular section of opening angle α = 2 atan rd
on the hemisphere Ω. Switching to projected solid angle
coordinates, the cosine vanishes and the section is projected
into a circle that occupies the fraction θ̃(r, d) := r2

r2+d2 of
the full unit circle. This is the value of the integral.

For d >> r, this ratio can be approximated as θ(r, d) =
r2

d2 = A
πd2 . Note that the fraction is low when the person is

far away or small, and vice versa. Substituting this formula
as the value of the integral in the previous equation, we find
that the final observed radiance is a blend of the the per-
son’s radiance and the background radiance, weighted by
this fraction, times the albedo of the wall:

Lo ≈ α [θ(r, d)Lp + [1− θ(r, d)]Ls] , (4)

Let us then make the approximation that the average ob-
servation of the pixel over the video segment is simply αLs,
as the person is moving and is not significantly covering the
wall in most frames. Subtracting this mean from the above,
the zero-mean signal is then L̃o ≈ αA

πd2 (Lp − Ls).
Finally, as the person is moving and only occasionally

near any given point on the wall (a fraction q ∈ [0, 1]
of time), the average power of the signal is qL̃2

o. This
coarse approximation is derived by treating the signal as a
Bernoulli random variable where with probability (1 − q)
we observe 0, and with probability q we observe Lo. The
variance is then (1 − q)(q)L2

o, or approximately qL2
o when

q is small. Substituting the formula for Lo, we arrive at Eq.
1 in the main text.

3.2. Power of Signal and Noise in Real Data

A video V (with zero mean over time) can be viewed
as a sum of two unknown videos V = S + N , one con-
taining the signal and the other the noise. In the follow-
ing, we show how to estimate the power of each compo-
nent. Let T be the (linear) operation that shifts a video
in time by one frame. We can reasonably assume that our
shadow signal varies slowly in time, so that any two con-
secutive frames are almost identical. Then, S − T (S) ≈ 0.
In contrast, the noise between frames is independent, and
a neighboring frame subtraction merely boosts the noise:
Var(N − T (N)) ≈ 2 Var N . Combining these two find-
ings, we have Var (V − T (V )) = Var [S + N − T (S +
N)] = Var [S−T (S)] + Var [N −T (N)] = 0 + 2 VarN ,
giving us a way to estimate the variance of N using only V .
Furthermore, the power (which coincides with variance) of
the noise plus signal is simply Var V . An estimate of the
signal power alone can be recovered by subtracting the ear-
lier estimate, giving Var S ≈ Var V − 1

2Var (V − T (V )).

3.3. Experiment for SNR in Real Data

To study the effect of distance of the person to the wall
and light intensity in the scene, we collected data in a con-

Figure 2: Setup diagram for collecting data with varying
distances and lighting intensities.

trolled environment controlling these parameters. One per-
son performed four activities, walking, crouching, waving
hands, and jumping, at four different distances (1.75, 2.45,
3.2, 3.95 meters) and at three different lighting intensities
(12, 48, 125 lux). The layout of the room is shown in Fig-
ure 2.

Supporting the theory and the graphs shown in the main
document, Figure 3 and 4 show the variation in the space-
time plots for the activities for the variations in distance of
the person to the wall and lighting intensity. As expected,
the signal correlated to the motion becomes faint as the dis-
tance of the person to the wall increases. Similar downtrend
in signal can be seen as the lighting intensity is reduced in
the scene.

4. Synthetic Data Pipeline
The flatland setup consists of two parallel walls – a re-

ceiver wall that is observed, and an emitter plane that emu-
lates the lighting environment, as shown in Figure 5a. Be-
tween these, one or two flat occluders move in distorted si-
nusoidal patterns. The light transport is simulated according
to an approximate two-dimensional version of the rendering
equation [2]. The lighting environment, diffuse albedo vari-
ation on receiver, occluder colors, motion patterns, ambient
lighting, noise, and other aspects of the simulation are ran-
domized. Figure 5b and 5c show a selection of one and two-
person space-time plots generated in this manner. While
not fully identical to the real data, the plots show similar
qualitative effects – for example, the streaks resulting from
cross-overs of the two person case can also be observed in
these plots.
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Figure 3: Horizontal space-time plots over different distance of the person to the observation wall and lighting intensities.
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Figure 4: Vertical space-time plots over different distance of the person to the observation wall and lighting intensities.
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Figure 5: (a) Two-dimensional flatland setup for synthetic
data generation. The two blockers representing persons
move back and forth along random directions. A 1D im-
age is rendered at the observation plane, taking into account
the mutual visibility between the blockers and the back wall
acting as an illuminant. (b) Samples of synthetic space-
time plots for one person scenario. (c) Samples of synthetic
space-time plots for two people, in the same flatland sce-
nario as (b).
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