
Learning Multi-scene Absolute Pose Regression with Transformers
Supplementary Materials

Yoli Shavit Ron Ferens Yosi Keller
Faculty of Engineering, Bar Ilan University, Ramat-Gan, Israel

{yolisha, ronferens, yosi.keller}@gmail.com

Contents

1. Appendix 1
1.1. Attention and Transformers . . . . . . . . . 1
1.2. Data Augmentation and Training . . . . . . 1
1.3. Visualization of Decoder Attention . . . . . 1
1.4. Model Scalability . . . . . . . . . . . . . . . 1
1.5. Related Work . . . . . . . . . . . . . . . . . 2

1. Appendix
1.1. Attention and Transformers

Attention mechanisms [1] are neural network layers that
aggregate information from the entire input sequence. The
aggregation is often computed by a sequence-to-sequence
architecture, where the inner-products (interactions) be-
tween the two sequences are used to compute the aggre-
gation weights. Attention models consist of an Encoder and
Decoder. The Encoder implements self-attention that maps
the input sequence into a higher dimensional space, that is
fed into the Decoder alongside a query sequence, outputting
the result sequence. Attention allows to numerically em-
phasize the contribution of the task-informative image lo-
cations, in contrast to the visual clutter. Transformers were
introduced by Vaswani et al. [23] as a novel formulation
of attention-based Encoders and Decoders for sequence en-
coding that does not use RNN layers such as LSTM and
GRU. Transformers consist of multiple stacked Multi-Head
Attention and Feed Forward layers. As no recurrent layers
are used, the relative position and sequential order of the
sequence elements are induced by adding positional encod-
ings to the embedded representation. Transformers were
shown to outperform RNNs in encoding long sequences,
and were applied in multiple recent works in natural lan-
guage processing (NLP) [9, 18] and computer vision [7, 10].
In this work, we propose a hybrid CNN-Transformer ar-
chitecture, inspired by recent advancements in visual trans-
formers for multi-object detection [7]. We employ encoders
to adaptively aggregate activation maps for position and ori-
entation regression and use decoders to decode aggregated

representations with respect to query scenes encoding.

1.2. Data Augmentation and Training

We follow the augmentation procedure described in [13].
During training, images are first rescaled so that the smaller
edge is resized to 256 pixels and then randomly cropped to a
224× 224 sized image. In addition, the brightness, contrast
and saturation are randomly jittered. At test time, the center
crop is taken after rescaling without any further augmenta-
tions. For the 7Scenes dataset we train with the aforemen-
tioned augmentation scheme for 30 epochs and reduce the
learning rate by half every 10 epochs. For the Cambridge-
Landmarks dataset, we first train without augmentations for
550 epochs, reducing the learning rate by half every 200
epochs. We then train for another 40 epochs (following the
same learning rate decay regime) with augmentations, opti-
mizing only the position branch (freezing all other weights)
with the position loss described in Eq. 6 in the main text.
Since this dataset also presents large variations in scene size
we sample images from smaller scenes more frequently to
achieve a data equalization effect.

1.3. Visualization of Decoder Attention

In order to gain additional insights into the scene-specific
features learned by our model, we further visualize the at-
tentions {Xi}N1 at the outputs of the positional decoder two
images from the St. Mary scene. In addition, we measure
and rank the decoder outputs by summing over the corre-
sponding attention map. Indeed, the strongest response is
obtained with the output corresponding to this scene (Fig.
1d). Interestingly, the activations related to the ShopFacade
(Fig. 1c) scene attend to the lower part of the input images,
which is typically includes the key features in images from
this scene.

1.4. Model Scalability

Two of the main benefits of single-scene APRs, com-
pared to other classes of localization methods, are their run-
time (10ms [3]) and memory footprint. However, in order to
cover a site with N scenes, N models need to be stored and
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(a) Kings C. (b) Old Hospital (c) Shop Facade (d) St. Mary

Figure 1: Translational Decoder attention visualization
{Xi}N1 . Each activation relates to a different scene. The
activations are due to two input images from the St Marys
scene. The activations of the corresponding scene are no-
tably stronger.

selected from during inference time. For example, serving
a site of 1000 scenes with the PoseNet model [13] requires
1000 × 50Mb = 5Gb. In order to evaluate the scalability
of our model, we measure its runtime and memory foot-
print with an increasing number of scenes. For this purpose,
we instantiated models for an increasing number of scenes,
and measured their memory signature and the runtime of
their forward pass, allowing us to evaluate the scalability
of our approach in the absence of real data. The results
of this experiment are shown in Table 1. We compare two
variants of our model: the architecture used for compara-
tive analysis (Section 4.2 in the main text), with six layers
for each encoder and decoder, and a shallower model with
two layers per encoder/decoder, for which we report simi-
lar performance as part of our ablation study (Section 4.4
in the main text). The memory footprint of our model re-
mains relatively constant, where increasing from 4 to 1000
scenes adds only 2Mb. In addition, both variants require
under 80Mb, before any optimization. The runtime of the
model remains constant in the range of 4-100 scenes and
increases by ∼ 1.5x for 1000 scenes. Assuming a constant
selection time, our model is 2 − 5x slower compared to a
single scene APR. This can be expected due to the runtime
complexity of the MHA operation, which is quadratic with
respect to the sequence length (number of scenes). How-
ever, a significant acceleration can be obtained with recent
linear-time MHA formulations [8] and other general opti-
mization methods [22] in order to enable competitive run-
time.

1.5. Related Work

Although our works focuses standalone light-weight
end-to-end camera pose regressors, we include cross-
comparison of representative methods from different local-

Table 1: Runtime (in ms) and memory footprint (in Mb) as
a function of the number of learned scenes. We show the
results for two instantiations of our model, using two or six
layers for all encoders and decoders. highlighted in bold.

Num. Scenes Runtime [ms] Memory [Mb]
Num. Layers 2 6 2 6

1 18.8 34.6 40.8 74.6
4 18.8 35 40.8 74.6
7 19.2 35.2 40.8 74.6

10 19.2 35.2 40.8 74.6
100 19.6 35.4 41.0 74.8
500 21.0 41.0 41.8 75.6
1000 27.0 58.6 42.8 76.7

ization approaches on the Cambridge Landmarks and the
7Scenes datasets (Tables 2 and 3 respectively).
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