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A More Details Regarding Experimental Comparisons Performed

Our proposed self-supervised algorithm is designed to take a stereo video as input and output a light field (LF)
video sequence. We evaluate our algorithm against other self-supervised [1] and disparity-based LF generation
algorithms [2, 3, 4, 5, 6]. For X-fields [1], we use their publicly available implementation [7] to make our comparisons.
As X-fields [1] is mainly designed for interpolation, we make the comparison X-fields (4-view) by providing the 4
corner views of the LF as the input. Each novel view of the LF is estimated using the 3 neighboring views with
the network capacity multiplier set to 8 (a higher value resulted in GPU memory error). For a fairer comparison,
we also run X-fields with only a stereo pair as input. As X-fields only interpolates between the input coordinates,
it’s not possible to generate the full 4D LF with only stereo pair as input and call it X-fields (2-view). Hence, we
employ a trick of duplicating the stereo pair as the corner views of the LF with the baseline in the v axis of the
LF set to zero. As can be seen in the accompanying supplementary video, this trick works well for some scenes
while failing completely for others. Hence, we mainly compare our algorithm against the X-fields (4-view) variant
and use the (2-view) variant as only a baseline. Further comparisons are shown in the supplementary video, where
we observe the 4-view variant fail to generate good LF views in some challenging cases. In the same video, we also
observe that X-fields (4-view) performs better than our proposed technique and we discuss this in Sec. E.

For further comparisons, we generate LF frames via warping the input views using stereo disparity [2, 3, 4, 5, 0]
as proposed in [3]. We consider various state-of-the-art supervised [2, 3, 4, 6] and unsupervised [5] algorithms for
estimating disparity from the input stereo pair. Using this disparity, the input views are then warped to the LF
views with the assumption that disparity remains the same in both horizontal and vertical directions. Due to the
small baseline of the input views, there are no large holes in the output frames and the small holes due to warping
are filled via interpolation.

B Details of Our Proposed Network Architecture

Here, we provide the details of the 3 different network architectures V , D and O.

Light field prediction network, )V  The LF prediction network consists of an input convolutional layer followed
by 11 ResNet blocks [9]. The input convolutional layer takes as input a stereo frame (6 channels) and outputs a
64 channel feature map, convolving with a kernel of size 3 x 3, without any spatial downsampling. This feature
map is then input to the ResNet block where the number of channels at the output is kept the same as that of
the input (here, 64 channels). Each ResNet block consists of 2 convolutional layers followed by the rectified linear
unit (ReLU) [10] activation. In each ResNet block, the first convolutional layer takes the 64 channel feature as
input and outputs a 32 channeled feature map. The second convolutional layer takes this intermediate 32 channel
feature map as input and outputs again a 64 channel feature map. There is no spatial downsampling or upsampling
within the ResNet blocks. The feature map at the output of the 11" ResNet block is then input to a convolutional
long short-term memory (ConvLSTM) network [11]. The cell state of this ConvLSTM network is then input to
a final convolutional layer which outputs 36 RGB (108) channels corresponding to the L = 3 layers and M = 12
rank of the low-rank LF representation /. ReLLU non-linearity is used at the output of the final convolutional layer
to ensure non-negative values in F.

Disparity and optical flow estimation network, D and @ As shown in Fig. 1, the neural networks D and O
are derived from the FlowNet [12] network architecture. Although both networks, D and O, share similar network
architecture, the weights are completely independent and are not shared between the two networks. To facilitate
temporal consistency in the predicted outputs, a ConvLSTM network is used after the encoder block, following [13].
The major differences between the two networks are in the correlation layer [12] and the final output convolutional
layer. The correlation layer which computes the cost volume between the two feature maps has 6 parameters [14]:
kernel-size, patch-size, stride, padding, dilation, and dilation-patch. The details of these parameters for both the
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Figure 1: For estimation of the disparity map and optical flow, we modify the FlowNet [12] architecture to include
the ConvLSTM network [11] at the encoder. All the layers in the neural network use 2D convolutional layers with
kernel size of 3 x 3.

networks, D, and O, are provided in Table 1. Other network details such as the number of channels per layer
are provided in Fig. 1. The final convolutional layer of both the networks uses the tanh non-linearity as shown in
Fig. 1 While the disparity estimation network D outputs a single channel, the flow estimation network O outputs
two channels.

C Generating stereo video from a 4D LF image

Consider a 4D LF image of the form L(z,y,u,v) where (z,y) are the spatial co-ordinates and (u, v) are the angular
co-ordinates. While simulating the video sequence, we assume a model of multiple pinhole cameras located at the co-
ordinates (u,v) from which individual views of the LF are captured. Simulating a camera motion through the given
light-field is equivalent to resampling the given 4D light-field function and projecting it to the desired camera [15,
16]. We consider the 6-DoF camera motion with translation and rotation defined as P(t) = [ps(t),py(t), p-(t)]
and R(t) = [0,(t),0,(t),0.(t)], respectively. We consider the stereo camera located at the two views (0, v,,) and
(U, vy,). For the given 6-DoF translation and rotation P(t) and R(t) respectively, the left view at time ¢ is given

by,
If = L(a?, 37 pi () — 27 pa(t), vm + Py (£) — ¥/ p=(t)) (1)
w = (& — UJ2) cos0.(t) — ysin(0. (1)) + U/2 )
Y = (x —U/2)sin b, (t) + ycos(h.(t)) (3)
Pa(t) = pa(t) + £0:(t) (4)
Py (1) = py(t) + f0,(1) ()

where f is the focal length of the camera. Similarly, the right view of the camera is given by,
It = L(@ g7 U + p(t) = @7pa(t), vm + 0, (8) — 47 p:(1)) (6)

We refer the readers to [16] for a detailed derivation of the above equations.

While we only require stereo videos for training, we require ground-truth LF video in order to quantitatively
evaluate the estimated LF videos during testing. For this, we generate full 5D LF videos from a single 4D LF
image. The LF video generation process follows that of the stereo video generation. The video generation process
described above is repeated across all the views of the LF instead of just 2 extreme views for the stereo video.

D More Qualitative Results

Ablation study In Table 4 of the manuscript, we quantitatively compare 5 different variants of our model. Here,
in Fig. 2, we make qualitative comparisons for some of the important variants in Table 4 of the manuscript. The



Network kernel-size patch-size stride padding dilation dilation-patch

@ 1x1 11 x 11 1 0 1 2
D 1x1 1x11 1 0 1 2
Table 1: Values that are used for the different parameters of the correlation layer [14] in the neural networks O
and D.
Model TD L:geo Etemp Lstereo  PSNR
V3 v X v v 19.20
V4 X X v v 6.04
V5 X v 4 v 30.50
Ours v v v v 32.39

Table 2: Ablation study of the proposed model with various loss terms from Eq. (12)

relevant quantitative comparisons are shown again in Table 2. As we observe from the epipolar plane image (EPT)
in Fig. 2 most of the reconstructed frames in V4 are zero due to the absence of both the low-rank representation F
and the geometric consistency term Lg,. This shows the importance of the intermediate representation F in the
absence of geometric consistency cost, Lg4¢0. Comparing V3 and Ours, the importance of the epipolar consistency
term Lge, is demonstrated. In V'3, the low-rank representation F imposes the inherent structure of LF on the
output. This ensures that the output frames are reasonably close to the actual LF frames. However, the additional
geometric consistency term [,geo in our proposed model provides accurate reconstructions as can be seen from the
EPI.

Efficacy of the intermediate low-rank representation In Fig. 3 we qualitatively compare the reconstruction
performance in the presence (Ours) and absence (V5 in Table 2) of the intermediate low-rank representation F.
The training is done with the full loss function as described in Eq. (12) of the manuscript. We observe that the
reconstructed LF frames are significantly blurred when we directly predict the LF frame as the output of the
network V .

E Discussion on Results

Comparison with X-fields (4-view) [1] On some sequences shown in the supplementary materia, X-fields (4-
view) [1] achieves better results for two important reasons. One, X-fields uses both horizontal and vertical disparity
information to produce the light-fields. Our technique however has only the horizontal disparity information from
the stereo image. Second, it is trained over one particular sequence and is hence expected to perform better. X-fields
is certainly a more versatile technique allowing for interpolation in time, view and light directions. Our work is a
complementary technique to X-fields: we allow for finetuning the reconstruction on a particular sequence, while
also utilizing data-driven approaches to improve performance in a way that generalizes well to arbitrary scenes.
Our work also provides a technique for extrapolation, which X-fields is not designed to handle currently.

Loss in spatial frequency We observe that there’s a loss in spatial details for some of the sequences shown in
the supplementary material video and in Fig. 4. While we observe blurring in some of our reconstructed sequences,
it is not a fundamental limitation of our overall technique. Incorporating detail-preserving losses on top of the
low-rank regularizer can preserve high-frequency details. For instance, a low-rank+sparse decomposition model for
LF, combined with a perceptual loss, could help recover the high-frequency details. As we see in Fig. 4, the spatial
frequency details can be restored to a reasonable accuracy.
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Figure 2: We show the qualitative comparisons for two important configurations of our proposed network archi-
tecture, V3 and V4. The low-rank representation JF, inherently imposes the structure of LF in V3 producing
reasonable reconstructions. However, in the absence of the representation F, most frames predicted by V4 are
zero. Further, enforcing explicit geometric consistency via Lge, produces significantly better reconstructions as
can be seen in the second column.
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Figure 3: We qualitatively compare the reconstruction performance in the presence (With TD) and absence (With-
out TD) of the intermediate low-rank representation F. We observe significant blurring in the reconstructed images
when not using the low-rank representation.
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Figure 4: As seen in middle image, we observe loss of spatial details in the reconstructed frames for some video
sequences. However, this is not a fundamental limitation of the proposed model. We observe in the right image
that the details can be recovered by the use of detail preserving perceptual cost metrics such as LPIPS [17] and
low-rank+sparse decomposition model.
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