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A Implementation Details of Unsupervised Deep Video Denoising

A.1 Restricting field of view

In UDVD, we rotate the input frames by multiples of 90◦ and process them through four separate branches (with
shared parameters) containing asymmetric convolutional filters that are vertically causal. As a result, the branches
produce outputs that only depend on the pixels above (0◦ rotation), to the left (90◦), below (180◦) or to the right
(270◦) of the output pixel. We use a UNet [1] style architecture for each branch of UDVD. The field of view of
the UNet is constrained by restricting the field of view of the convolutional, downsampling and upsampling layers
that are used to build the UNet.

Convolutional Layers: We restrict the receptive field of each convolutional layer to extend only upwards follow-
ing the strategy proposed in [2]. Let the filter size be h× w. We zero-pad the top region of the input tensor with
k = bh/2c zero rows before convolution and remove the bottom k rows after convolution. This is equivalent to con-
volving with a filter, where all weights below the center row are zero, so that the field of view only extends upwards.

Downsampling and Upsampling Layers: Following [2] we restrict the receptive field of the downsampling layer
by creating an offset of one pixel (zero-pad with a row of zeros on the top and remove a row of pixels from below)
before performing max-pooling using a 2× 2 kernel. This operation restricts the field of view of the downsampling
and upsampling operation pair.
Note that we do not use BatchNorm [3] layers in UDVD as computing the spatial mean and variance would modify
the field of view to include the center pixel.

A.2 Adding the Noisy Pixel Back

The denoised generated by the proposed architecture at each pixel is computed without using the noisy observation
at that location. This avoids overfitting – i.e. learning the trivial identity map that minimizes the mean-squared
error cost function – but ignores important information provided by the noisy pixel. In the case of Gaussian
additive noise, we can use this information via a precision-weighted average between the network output and the
noisy pixel value. Following [2], the weights in the average are derived by assuming a Gaussian distribution for the
error in the blind-spot estimates of the (color) pixel values. The CNN architecture is trained to estimate the mean
and covariance of this distribution at each pixel by maximizing the log likelihood of the noisy data. We explain
this in detail in the following paragraphs.

UDVD estimates the value of a pixel based on the noisy pixels in its neighbourhood. We model the distribution
of the three color channels of a pixel x ∈ R3 given the noisy neighbourhood Ωy as p(x|Ωy) = N (µx,Σx), where
µx ∈ R3 and Σx ∈ R3 represent the mean vector and covariance matrix. Let y = x + η, η ∼ N (0, σ2I3) be the
observed noisy pixel. We integrate the information in the noisy pixel with the UDVD output by computing the
mean of the posterior p(x|y,Ωy), given by

p(x|y,Ωy) ∝ p(y|x) p(x|Ωy) (1)

∗equal contribution.
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Name Nout Function

Input k1
enc conv 0 48 Convolution 3× 3
enc conv 1 48 Convolution 3× 3
enc conv 2 48 Convolution 3× 3
pool 1 48 MaxPool 2× 2
enc conv 3 48 Convolution 3× 3
enc conv 4 48 Convolution 3× 3
enc conv 5 48 Convolution 3× 3
pool 2 48 MaxPool 2× 2
enc conv 6 96 Convolution 3× 3
enc conv 7 96 Convolution 3× 3
enc conv 8 48 Convolution 3× 3
upsample 1 48 NearestUpsample 2× 2
concat 1 96 Concatenate output of pool 1
dec conv 0 96 Convolution 3× 3
dec conv 1 96 Convolution 3× 3
dec conv 2 96 Convolution 3× 3
dec conv 3 96 Convolution 3× 3
upsample 2 96 NearestUpsample 2× 2
concat 2 96+k1 Concatenate output of Input
dec conv 4 96 Convolution 3× 3
dec conv 5 96 Convolution 3× 3
dec conv 6 96 Convolution 3× 3
dec conv 7 k2 Convolution 3× 3

Table 1: Network architecture used for UDVD. The convolution and pooling layers are the blind-spot variants
described in Section A.1. k1 and k2 represent the number of input and output channels of the base network
respectively.

where p(x|Ωy) is the prior and p(y|x) is the noise model. Since both the prior and the noise model are Gaussian,
we can write the optimal posterior estimate as,

E[x|y] = (Σ−1
x + σ−2I)−1(Σ−1

x µx + σ−2y). (2)

Note that the posterior mean has a very intuitive interpretation. When the signal variance is high compared
to noise variance (i.e. the uncertainty in our estimation is high) the posterior mean favours noisy pixel value. We
estimate µx and Σx as a function of the neighbourhood Ωy using the network architecture discussed earlier. If x
is a grayscale image, then the output of the network consists of two channels - one for µx and one for σx. When
the input image has k channels, the output consists of k channels for µx and k(k − 1)/2 for the upper-triangular
entries of Σx

One can estimate µx and Σx directly from the noisy data by maximizing the likelihood. Using our distributional
assumptions, the noisy pixels y follows a Gaussian distribution, y ∼ N (µy,Σy), where µy = µx and Σy = Σx+σ2I.
Therefore, the loss function or the negative log likelihood is:

L(µx,Σx) =
1

2
[(y − µx)T (Σx + σ2I)−1(y − µx)] +

1

2
log |Σx + σ2I|. (3)

If σ is unknown during training and has to be estimated, we use a separate neural network with the same
architecture to do so. In such cases, we add a small regularization term equal to −0.1σ for numerical stability,
following [2].

For the experiments with real data, the noise distribution is unknown, so we simply ignore the central pixel.

A.3 Architecture and Training

Architecture: The overall architecture is explained in Section 3 of the paper. The network architecture for the
D1 and D2 blocks is described in Table 1. D1 has k1 = 9 input channels and k2 = 32 output channels. D2 has
k1 = 96 input channels and k2 = 96 output channels. The architecture of D1 and D2 are analogous to the blocks in
FastDVDnet [4] to facilitate fair comparison with the supervised models. As described in Fig. 2 of the paper, D2 is
followed by a derotation and the output is passed to a series of three cascaded 1×1 convolutions and non-linearity
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DAVIS Set8

Supervised CNN Unsupervised CNN (UDVD) Supervised CNN Unsupervised CNN (UDVD)

σ 5 frames 1 frame 3 frames 5 frames 5 frames 1 frame 3 frames 5 frames

20 35.86 34.13 34.91 35.16 33.37 32.39 33.09 33.36
30 34.06 32.80 33.48 33.92 31.60 30.91 31.62 32.01
40 32.80 31.48 32.20 32.68 30.37 29.63 30.42 30.82
50 31.83 30.47 31.20 31.70 29.42 28.65 29.47 29.89
60 31.01 29.65 30.39 30.90 29.08 27.86 28.70 29.13
70 30.21 28.96 29.70 30.22 28.37 27.20 28.06 28.49
80 29.28 28.37 29.10 29.63 27.60 26.65 27.50 27.94

Table 2: Performance of UDVD. Table shows the mean PSNR values of a state-of-the-art supervised video
denoiser (FastDVDnet [4] ) and UDVD with the denoised frame being predicted from k ∈ {1, 3, 5} surrounding
frames. The performance of UDVD monotonically increases with k and is comparable for supervised denoising
across all noise levels. All the three UDVD networks reported here are trained for only σ = 30. FastDVDnet is
trained for σ ∈ [5, 55].

for reconstruction with 4 and 96 intermediate output channels, as in [2]. The final convolutional layer is linear
and has 9 output channels, 3 representing the RGB value of the denoised image and 6 representing its covariance
matrix. We use the same architecture for fluorescence microscopy and electron microscopy with the number of
input channels to UDVD modified to 5 and number of output channels modified to 1.

Training Details: Following the convention in image and video denoising, we train UDVD on 128× 128 patches
extracted from our dataset [5, 6, 2, 4, 7] (this is also consistent with the training methodology of the supervised
baselines). For the natural video and fluorescence microscopy datasets, no data augmentation was applied. For
electron microscopy dataset, we applied spatial flipping, time reversal and time subsampling (i.e. skipping frames).

Optimization Details: All networks were trained using Adam [8] optimizer with a starting learning of 10−4.
The learning rate was decreased by a factor of 2 at checkpoints [20, 25, 30] during a total training of 40 epochs.
We did not experiment with other learning rate schedules such as cosine scheduling, which is a popular choice in
unsupervised image denoising [2].

B Ablation Study on Number of Input Frames

We perform an ablation study on the number of frames k UDVD uses as input, k ∈ {1, 3, 5}. UDVD with k = 1
is equivalent to the blind-spot network proposed for image denoising in [2]. In this section we describe the archi-
tectural and training details for UDVD with k ∈ {1, 3, 5} and present some additional results.

Architectural Details: UDVD with k = 1 contains only one UNet style network in each branch with architecture
described in Table 1 and Section A.3. There are 3 input channels and 9 output channels (3 for the RGB channels
in each denoised pixel and 6 for the corresponding covariance matrix). UDVD with k = 3 has a similar architecture
as for k = 1 but has 9 input channels instead (3 channels for each frame). The architecture for k = 5 is described
in Section A.3.

Training Details: UDVD with k ∈ {1, 3, 5} was trained on the DAVIS dataset with σ = 30. The training details
were as described in Section A.3.

Results: As shown in Table 1 of the paper and Table 2 performance improves substantially and monotonically
with k (the number of surrounding frames used to denoise each frame) across a wide range of noise levels. This
difference in performance can also be observed visually. Fig 1 shows an example where the texture details of the
brick wall and the fence are not well recovered when using only a single noisy frame. The texture is estimated
better when using 5 noisy frames to predict the denoised output.

3



(a) Ground
Truth

(b) Noisy

(c) UDVD
(k = 1)

(d) UDVD
(k = 3)

(e) UDVD
(k = 5)

Figure 1: Comparison of blind image and video denoising. Example from the DAVIS dataset. (a) Ground
truth frame. (b) Noisy frame. (c) Reconstruction using a single frame. The texture details of the brick wall and
the fence are not recovered well. Reconstruction using (d) 3 and (e) 5 surrounding frames produces an improved
texture estimate.
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C Denoising Results on Natural Video Datasets

C.1 Comparison to Supervised Video Denoising

In this section we provide additional comparisons between UDVD and supervised CNN-based methods.

1. Table 2 shows the performance of UDVD trained at σ = 30, and FastDVDnet trained for σ ∈ [5, 55] when
evaluated on the DAVIS test set and Set8 corrupted with σ ∈ {20, 40, . . . , 80}. UDVD achieves comparable
performance to FastDVDnet on DAVIS test set and slightly outperforms it on Set8 at all noise levels.

2. Examples of noisy videos, and denoised counterparts obtained using UDVD are included in the official github
repository1 (hypermooth.mp4, rafting.mp4, motorbike.mp4 and snowboard.mp4).

C.2 Comparison to Burst Denoising

When several photographs are captured in quick succession to each other, the resulting set of images are often
blurry or noisy (particularly when the object is in motion). Burst denoising aims to recover estimate the original
scene from the set of burst photographs. Recent methods have solved burst denoising by applying deep neural
network to map a stack of burst images to a single clean frame [9, 10, 11]. A popular burst denoising method,
KPN [10] achieved a PSNR of 27.83 on the DAVIS dataset at σ = 30 2, while UDVD achieves a PSNR of 33.92.
UDVD is expected to outperform burst denoising methods as these methods (1) are trained for jittered motions,
and cannot exploit systematic motion in natural videos like video denoising methods, and (2) often do not expect
a motion change of more than 2 pixels from one frame to another [10], while the motion in natural videos is usually
much larger (see Section 6 in main paper).

D UDVD-S: Denoising Using Only a Single Video

UDVD, combined with aggressive data augmentation and early stopping, achieves state-of-the-art performance
even when trained on only a single short video. In this section, we analyze the contribution of each of the data
augmentation and early stopping scheme to the performance of UDVD-S through an ablation study. We also
provide more details about our comparison to MF2F [12].

D.1 Details of test sets.

We evaluate UDVD-S and baselines on the following four datasets:

1. DAVIS [13]: We take all the 30 sequences from the test set of the DAVIS Challenge 2017.

2. Set8 [4]: Following FastDVDNet [4], we use 4 sequences from the GoPro set (hypersmooth, motorbike,
rafting, snowboard) and 4 sequences from the Derfs Test Media Collection (park joy, sunflower, touchdown,
tractor).

3. Derfs: Following [12], we use 7 sequences from the Derfs Test Media Collection, which are park joy, sunflower,
touchdown, tractor (shared with Set8), and blue sky, old town cross, pedestrian area. We use the first 85
frames from each sequences with a spatial-resolution of 960× 540 [4].

4. Vid3oC [14]: We use the first 10 sequences (000 to 009 ) out of the 50 available sequences.

D.2 Ablation study

We train UDVD-S on 128 × 128 patches extracted from the noisy video. (see Section A.3) for more details). For
each patch, we apply each of the following data augmentations at random:

1. Spatial flipping: We flip all the 5 input patches vertically or horizontally. This operation only rearranges
the pixel location and does not combine the pixel together in anyway, making sure that the noise statistics
is still preserved after the augmentation.

2. Time reversal: We reverse the order of frames in the input to generate a new video. Like spatial flipping,
this operation also preserves the noise statistics.

1https://github.com/sreyas-mohan/udvd
2Evaluated using the pre-trained model provided here: https://github.com/z-bingo/kernel-prediction-networks-PyTorch

5

https://github.com/sreyas-mohan/udvd


σ = 30

ten-v snow hyper raft motor trac sunf touch park mean

No. of frames 75 59 37 29 32 85 85 85 85 -

No Aug (without ES) 33.37 29.10 29.72 27.26 27.28 32.52 35.07 32.65 30.20 30.80
No Aug (with ES) 34.35 30.67 32.42 30.72 29.21 33.08 37.04 33.63 30.40 32.39
F (without ES) 34.00 30.60 30.15 30.16 28.44 33.09 36.86 33.56 30.37 31.91
F (with ES) 34.68 30.76 32.41 30.76 29.33 33.35 37.13 33.74 30.53 32.52
F+TR (without ES) 34.18 30.73 31.06 30.31 28.98 33.53 37.29 33.51 30.56 32.24
F+TR (with ES) 34.70 30.78 32.60 30.80 29.36 33.54 37.29 33.88 30.56 32.61

UDVD∗ 34.82 30.83 32.34 30.82 29.24 31.73 35.33 33.48 28.98 31.95
FastDVDnet∗ 34.58 30.78 32.48 30.94 29.35 31.39 35.06 33.71 28.73 31.89

MF2F - 8 sigmas 34.45 30.44 30.93 29.70 28.81 31.61 34.43 33.41 28.79 31.40
MF2F - online no teacher 34.50 30.42 30.54 29.45 28.40 32.11 35.19 33.47 28.89 31.44
MF2F - online with teacher 34.48 30.44 31.13 29.91 28.92 32.08 35.20 33.44 28.91 31.61
MF2F - offline no teacher 34.66 30.49 30.20 29.38 28.36 32.19 35.50 33.58 28.98 31.48
MF2F - offline with teacher 34.63 30.52 31.16 29.55 28.92 31.93 35.52 33.61 29.04 31.65

Table 3: Results for UDVD and MF2F trained on individual noisy videos for σ = 30. The top block
show PSNR values for UDVD trained on each individual video sequence with and without data augmentation
(spatial flipping(F) and time-reversal(TR)) and early stopping (ES). Early stopping was performed using the last
5 frames of each video as the held-out set. The last block shows the result of running MF2F [12] with all the
5 different fine-tuning scheme proposed in Ref. [12]. With the augmentations and early stopping, UDVD-S, on
average outperforms UDVD and FastDVDnet trained on the full DAVIS dataset (indicated by ∗) and MF2F which
fine-tunes a pre-trained FastDVDNet on each individual video. The best performing method for each video is
highlighted in bold and the best performing method in each block is highlighted in italics. The tennis-vest video
is from DAVIS and the rest of the 8 videos are from Set8.

In addition to data augmentation, we employ early stopping by choosing the model parameters which produced
the best error on a a held-out set of frames. We pick the last 5 frames of each video as our held out set. Tables 3
and 4 show an ablation study over data augmentations and early stopping for 9 different videos at two different
noise levels, σ = 30 and σ = 90. Across videos and noise levels, data augmentation and early stopping significantly
increase the performance of our method.

D.3 Comparison with MF2F

We compare the performance of UDVD-S to an unsupervised denoising method MF2F [12]. MF2F fine-tunes a
pre-trained CNN on the noisy video using an objective function involving optical flow. The pre-trained CNN used
in MF2F is FastDVDNet [4], which is trained with supervised on a large dataset of natural videos(DAVIS [13]). The
authors of MF2F provide five different schemes for fine-tuning: 8 sigmas, online no teacher, online with teacher,
offline no teacher and offline with teacher. Tables 3 and 4 show the denoising results using each of these five
training schemes. The best result (on 4 different dataets) is reported in Table 2 of the main paper. In addition
to this, we also apply MF2F on real electron microscopy data (see Figure 2), where it fails. We used the official
implementation3 for all the training schemes.

(a) Noisy Input (b) UDVD-S (c) MF2F

Figure 2: UDVD-S outperforms MF2F on electron microscopy data. UDVD-S is able to effectively denoise
real-world data acquired from an electron-microscopy, but MF2F fails.

3https://github.com/cmla/mf2f
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σ = 90

ten-v snow hyper raft motor trac sunf touch park mean

No. of frames 75 59 37 29 32 85 85 85 85 -

No Aug (without ES) 24.13 22.89 22.04 20.99 20.06 24.84 25.98 25.67 23.35 23.33
No Aug (with ES) 30.15 25.49 27.48 26.05 23.79 28.18 31.91 29.87 25.46 27.60
F (without ES) 27.21 24.42 24.05 23.32 21.84 27.42 29.53 28.01 25.03 25.65
F (with ES) 30.35 25.60 27.72 26.16 23.89 28.71 32.17 29.93 25.59 27.79
F+TR (without ES) 27.11 24.77 24.25 23.55 21.98 27.80 30.22 28.56 25.44 25.96
F+TR (with ES) 30.40 25.59 27.75 26.16 23.92 28.63 32.18 29.96 25.62 27.80

UDVD∗ 28.78 25.16 26.78 25.81 23.57 26.42 29.04 28.71 24.23 26.50
FastDVDnet∗ 29.44 25.25 27.30 26.35 23.68 27.42 30.29 29.61 24.72 27.12

MF2F - 8 sigmas 28.79 25.04 27.14 26.21 23.56 26.89 29.19 29.04 24.35 26.69
MF2F - online no teacher 28.35 25.12 26.67 26.07 23.39 27.28 30.01 29.49 24.64 26.78
MF2F - online with teacher 29.44 25.25 27.30 26.35 23.68 27.42 30.09 29.53 24.71 27.08
MF2F - offline no teacher 28.70 25.17 26.64 26.02 23.41 27.42 30.29 29.60 24.72 26.89
MF2F - offline with teacher 28.79 25.25 27.22 26.31 23.62 27.34 30.29 29.61 24.69 27.01

Table 4: Results for UDVD and MF2F trained on individual noisy videos for σ = 90. The top block
show PSNR values for UDVD trained on each individual video sequence with and without data augmentation
(spatial flipping(F) and time-reversal(TR)) and early stopping (ES). Early stopping was performed using the last
5 frames of each video as the held-out set. The last block shows the result of running MF2F [12] with all the
5 different fine-tuning scheme proposed in Ref. [12]. With the augmentations and early stopping, UDVD-S, on
average outperforms, UDVD or FastDVDnet trained on the full DAVIS dataset (indicated by ∗) and MF2F which
fine-tunes on a pre-trained FastDVDNet on each individual video. The best performing method for each video is
highlighted in bold and the best performing method in each block is highlighted in italics. The tennis-vest video
is from DAVIS and the rest of the 8 videos are from Set8.

D.4 Measure of Confidence on Improvements

We compute the mean and standard deviation of the improvement of UDVD-S with respect to MF2F in Table 5.

DAVIS Set8 Derfs Vid3oC

σ = 30 -0.33 ± 0.18 0.99 ± 0.21 1.09 ± 0.50 -0.54 ± 0.52
σ = 90 0.15 ± 0.09 0.65 ± 0.23 1.13 ± 0.39 0.26 ± 0.28

Table 5: Measure of confidence on improvement of UDVD-S with respect to MF2F. We compute the
mean and standard deviation of the difference between performance on UDVD-S and MF2F (in PSNR) on four
different datasets and two different noise levels (σ = 30, 90). UDVD-S outperforms MF2F with high certainty on
two datasets at low noise level (σ = 30) and all the four datasets at high noise level (σ = 90).

E Denoising Results on Real-world Datasets

Raw videos: The estimated ground truth, noisy raw data [15], and the denoised videos obtained with UDVD can
be found on the official github repository (raw video.mp4). The videos were converted to RGB for illustration.

As discussed in the main paper, UDVD was directly trained on the mosaiced raw videos. Existing unsupervised
video denoising methods, like MF2F [12], cannot be applied directly on this dataset as their pre-trained backbone
expects an input in the RGB domain. In Ref. [12], the authors convert mosaiced videos into the RGB domain,
apply MF2F [12] and transform the denoised RGB videos back.

Fluorescence and electron microscopy data: The noisy fluorescence microscopy and electron microscopy
data, and the denoised videos obtained with UDVD can be found on the official github repository (fluoro 1.mp4,

fluoro 2.mp4 and electron.mp4).
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Figure 3: Generalization across noise levels and frame rates. (left) UDVD trained at only σ = 30 generalizes
well to noise levels not seen during training. The plotted points represent mean PSNR values evaluated on Set8.
(right) UDVD generalizes well to faster videos (created by skipping frames) and consistently outperforms a baseline
image denoiser (UDVD with a single input frame, shown as a green dashed line).

F Generalization Across Noise and Frame Rate

Ideally, a denoiser should be able to denoise videos corrupted at a wide range of noise levels. This is usually
achieved by training the CNN on examples corrupted with a range of noise strength [5, 4, 7]. The range of noise
levels on which the network is trained is called the training range of the network.

Generalization outside the training range: The authors of [6] showed that CNNs trained for image denoising
generalize well on test images corrupted with noise in the training range, but fails catastrophically when corrupted
with noise strength outside the training range. The authors provided evidence that the overfitting is due to additive
terms in the convolutional layers (and BatchNorm [3] ) and showed that a CNN with no additive terms, called a
bias-free CNN generalizes well outside the training range. UDVD uses a bias-free architecture and generalizes well
to noise levels outside its training range (Fig 3).

Generalization across frame rates: To test generalization across frame rates, we simulated faster videos by
skipping frames of videos in Set8. Fig 3 shows that UDVD generalizes robustly to faster videos and maintains a
significant gain in performance over single-image denoising even when tested on videos where a large number of
frames have been skipped (i.e. at a very low frame rate).

G Analysis of CNN-based Video Denoising

G.1 Natural Videos

In Section 7 and Fig 4 of the paper we examined the equivalent filters and illustrated that UDVD learns to denoise
by performing an average over a spatiotemporal neighbourhood of each pixel. Here we examine equivalent filters
for more videos and a supervised CNN (FastDVDnet) and show that similar observations hold.

Adaptive filtering: Fig 5, 6, 7 and 8 shows filters computed at a pixel for 4 different videos at 4 different noise
levels. The filters adapt to the underlying signal content. They span larger areas as the noise level increases. These
observations also holds for FastDVDnet, which is trained with supervision (Fig 9)

Contribution of neighbouring frames for denoising: UDVD tends to ignore temporally distant frames at
lower noise levels as shown in Fig 5, 6, 7 and 8. This phenomenon is quantified in Fig 4 by plotting the contribution
of each frame to the denoised pixel by averaging over 5000 pixels from 250 random patches of size 128 × 128.
At higher noise levels, UDVD seems to use distant frames more. This is consistent with the ablation study, which
shows that for higher noise levels using more surrounding frames improves the denoising performance. Similar
results hold for supervised CNN FastDVDnet, as shown in Fig 9.

Local Averaging: The weighting functions or equivalent filters perform an approximate averaging operation.
They are mostly non-negative (although they do have some negative entries as depicted in blue in Fig 5, 6, 7 and
8) and they approximately sum up to one (see Fig 4).

8



G.2 Real-world Data

Equivalent filters for the raw video, the fluorescence-microscopy and the electron-microscopy data are shown in
Fig 10. The fluorescence -microscopy data have a low noise level. As expected from the results on natural videos
(see Section C), the weighting functions are mostly confined to the middle frame (as quantified in Fig 4). In the
electron-microscopy dataset the weighting functions shows that the network relies on adjacent frames to estimate
the denoised (as quantified in Fig 4).

G.3 Motion Estimation

Figures 5, 6, 7 and 8 show that the equivalent filters in adjoining frames are automatically shifted spatially to
account for the movement of objects in the videos. We extracted motion information using the shift as explained in
Section 6. Figures 11, 12, 13 and 14 show additional examples for UDVD and FastDVDnet. The estimated optical
flow is mostly consistent with the estimated obtained by DeepFlow [16] applied on the clean videos. The motion
estimates obtained from the equivalent filters tends to be less accurate for pixels near strongly correlated features
or highly homogeneous regions where the local motion is ambiguous.
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Figure 4: Quantitative analysis of equivalent filters. Left column: The graphs show the sum of the entries
of the equivalent filters in each frame, averaged over 5000 pixels from 250 random patches of size 128 × 128.
For all datasets, the central frame dominates. For the DAVIS dataset (top), the contribution from the other
frames increases with the noise level. For the fluorescence-microscopy data (mid) the contribution of the other
frames is rather low, due to the high signal-to-noise ratio. For the electron-microscopy dataset the contribution
of the other frames is larger (bottom). Right column: Histogram of the sum of all entries in the equivalent filters
(over all 5 frames) for 5000 pixels from 250 random patches of size 128 × 128 from the DAVIS test set (top),
the fluorescence-microscopy dataset (mid) and the electron-microscopy dataset (bottom). For the DAVIS and
fluorescence-microscopy datasets, the filters sum to 1 in most cases. The peak of electron microscopy deviates
significantly from 1. This could be due to the noise model, which has non-Gaussian characteristics (it is Poisson
with low counts).
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Figure 5: Video denoising as spatiotemporal adaptive filtering; giant-slalom video from the DAVIS
dataset. Visualization of the linear weighting functions (a(k, i), Section 6 of paper) of UDVD. The left two columns
show the noisy frame yt at four levels of noise, and the corresponding denoised frame, dt. Weighting functions
a(k, i) corresponding to the pixel i (at the intersection of the dashed white lines), for five successive frames, are
shown in the last five columns. The weighting functions adapt to underlying image content, and are shifted to
track the motion of the skier. As the noise level σ increases, their spatial extent grows, averaging out more of the
noise while respecting object boundaries. The weighting functions corresponding to the five frames approximately
sum to one, and thus compute a local average (although some weights are negative, depicted in blue) as explained
in Section G.1.
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Figure 6: Video denoising as spatiotemporal adaptive filtering; rafting video from the GoPro dataset.
Visualization of the equivalent filters, as described in Fig 5.
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Figure 7: Video denoising as spatiotemporal adaptive filtering; tractor video from Set8. Visualization
of the equivalent filters, as described in Fig 5.
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Figure 8: Video denoising as spatiotemporal adaptive filtering; bus video from the DAVIS dataset.
Visualization of the equivalent filters, as described in Fig 5.
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Figure 9: Video denoising using FastDVDnet as spatiotemporal adaptive filtering; bus video from
the DAVIS dataset. Visualization of the linear weighting functions (a(k, i), Section 6 of paper) of FastDVDnet
which is trained with supervision. The left two columns show the noisy frame yt at four levels of noise, and the
corresponding denoised frame, dt. Weighting functions a(k, i) corresponding to the pixel i (at the intersection of the
dashed white lines), for five successive frames, are shown in the last five columns. The weighting functions adapt
to underlying image content, and are shifted to track the motion of the stop sign. As the noise level σ increases,
their spatial extent grows, averaging out more of the noise while respecting object boundaries. The behavior is
very similar to the corresponding filters of UDVD as shown in Fig 8.
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Figure 10: Equivalent filters of UDVD when applied to real-world data. Visualization of the linear
weighting functions (a(k, i), Section 6 of paper) of UDVD trained to denoise raw video, fluorescence and electron
microscopy data. The left two columns show the noisy frame yt and the corresponding denoised frame, dt. Weighting
functions a(k, i) corresponding to the pixel i (at the intersection of the dashed white lines), for five successive
frames, are shown in the last five columns. In raw video data and fluorescence-microscopy data, the contributions
from neighbouring frames are smaller. For electron-microscopy data they are larger (see also Fig 4).
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Figure 11: CNNs trained for denoising automatically learn to perform motion estimation. (a) Noisy
frame from giant-slalom video in the DAVIS dataset. (b) Optical flow direction at multiple locations of the image
obtained using a state-of-the-art algorithm applied to the clean video. Optical flow direction estimated from the
shift of the adaptive filter obtained from the gradients of (c) FastDVDnet and (d) UDVD, both of which are trained
with no optical flow information. FastDVDnet is trained with supervision. Optical flow estimates are well-matched
to those in (b), but are not as accurated at oriented features, and in homogeneous regions where local motion is
not well defined (e.g. in the background). Each row corresponds to a different noise levels. At higher noise levels,
the networks perform averages over more frames, improving the motion estimation results.
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Figure 12: CNNs trained for denoising automatically learn to perform motion estimation; rafting

video from Set8. Motion estimated from the gradients of UDVD and FastDVDnet. See description of Figure 11.
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Figure 13: CNNs trained for denoising automatically learn to perform motion estimation; tractor

video from Set8. Motion estimated from the gradients of UDVD and FastDVDnet. See description of Figure 11.
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Figure 14: CNNs trained for denoising automatically learn to perform motion estimation; bus video
from the DAVIS dataset. Motion estimated from the gradients of UDVD and FastDVDnet. See description of
Figure 11.
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