
7. Supplementary material
7.1. Effect parameter details

In the experiment, we assumed the most common three
text effects: fill, border, and shadow. Fig 7 illustrates an
example of those effects. We also assume the ordering of
the effects is fixed to shadow → fill → border.

7.2. Illustration of alpha generation

We illustrate the process of alpha generation based on
pre-rendered alpha maps in Fig 8.

7.3. Text style transfer examples

As shown in Fig.6, the proposed model can use the text
style of another text on the rendering step. Here, we show
more detailed examples of text style transfer, as Fig.7. Five
different styles are transferred to a text (e.g., “FREE” and
“BACON”) in an input image. Note again that the proposed
model can transfer not just font style but also effect style.

7.4. Text image generator details

We use a text image generator, which is modified from
SynthText, and record the exact rendering parameter used
in the text image generator to supervise the training of our
model. Here, we introduce our text image generator details,
in terms of the type of the background images, text place-
ment rule, and sampling rule of the rendering parameter.

The background images originally used in SynthText are
insufficient for the robust performance on the display me-
dia; we therefore add background images from single-color
background data, Book cover dataset, BAM dataset, and
FMD dataset. For those five types of background images,
we render texts and place texts in background images.

The rule of the text placement procedure is different in
the type of the background images, respectively. For the
background images from SynthText, the text placement pro-
cedure follows SynthText; we apply over-segmentation to
generate candidate regions to place a text. Note that we dis-
able text rotation for the function of SynthText. For BAM
and Book cover data, we utilize a saliency map to generate
candidate locations. For Book cover data, we also generate
candidate locations by applying the existing OCR model.
Unlike other background images, BAM and Book cover im-
ages often include texts, then we apply text inpainting to
erase texts in advance. We randomly generate text loca-
tions for single-color flat backgrounds and FMD images.
On FMD, we crop material regions and use those regions
as backgrounds. We generate 10,000 text rendered images
for the background images, respectively. Then we exclude
images that have too-small candidate regions for locating
texts, and finally obtained a total of 42,285 images.

After generating candidate regions, we set rendering pa-
rameters. Font categories are randomly sampled from pre-

defined categories. The effect parameters and colors are
randomly sampled from a predefined range. Unlike Syn-
thText, we implement our data generator using the Skia
graphics library1, which can handle both font and effects
without raster artifacts.

7.5. Architecture details

We show the detailed configurations for the parser mod-
els in Table 3. Our encoder model, i.e. backbone model,
is based on an hour-glass model. We add some convolution
layers to the outputs’ head to enlarge the receptive fields be-
cause texts tend to be large in the display media. There are
branches for predicting text rendering parameters: the OCR
branch, the alpha branch, the font branch, the effect visibil-
ity brach, and the effect parameter branch. The OCR branch
is further split into the word detector, the character detec-
tor, and the character classifier. For extracting text colors,
we predict pixel-wise alpha maps to decompose an image.
We obtain font information for each text by a classification
model. To parse text effects, we predict both effects visibil-
ity and effects parameters. We consider visibility prediction
as a binary classification problem and shadow parameter es-
timation as a regression problem. We predict discretized pa-
rameters by a classification model for border effects because
we use pre-rendered alpha maps for them. We quantize the
border parameter into five bins in our experiments.

In Table3, the third “kernel and stride” column indicate
the kernel size and the stride in the convolution layer if the
layer has those configurations. The three numerical values
in both columns of input size and output size represent ten-
sors’ size for channel, height, and width. We represent the
intermediate representation in inputs and outputs by B1-B5
for the backbone model, W1-W3 for the word detector, C1-
C3 for the character detector, R1-R3 for the character clas-
sifier, A1-A6 for the alpha model, F1 for the font model,
V1 for the effects visibility model, and P1 for the effects
parameter model.

1https://skia.org/

(a) Composited (b) Fill

(c) Border (d) Shadow

Figure 7: Effect examples.

https://skia.org/


Pre-rendered alpha A!!(i, j)

Font

Character

Joint probability	𝑃(Θ")

!

Alpha

Rendering 
parameters	P(𝜃#)Feedforward parser

External 
rendering engine

𝑃(Θ")A!!Joint probability	𝑃(Θ") Pre-rendered alpha A!!(i, j)

Alpha generator

Preparing pre-rendered alpha maps

Parameter Set
Θ′

Figure 8: Alpha generator using pre-rendered alpha maps. We illustrate the case where we have 26 characters and fonts.



Inputs
Style

Figure 9: Examples of text style transfer in an external renderer. Since we transfer style information in parameter space, we
produce no pixel artifacts such as blur on texts.



Table 3: Architecture details.

Model Layers Kernel, Stride Input Input size Output Output Size

Backbone

Hour Glass Net - x 3×H×W B1 256×H/4×W/4
CONV + BN + RELU (3 × 3), (2 × 2) B1 256×H/4×W/4 B2 128×H/8×W/8
CONV + BN + RELU (3 × 3), (2 × 2) B2 128×H/8×W/8 B3 128×H/16×W/16
CONV + BN + RELU (3 × 3), (2 × 2) B3 128×H/16×W/16 B4 128×H/32×W/32

Upsampling - B4 128×H/32×W/32 B5 128×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) B1 and B5 384×H/4×W/4 e(x) 256×H/4×W/4

Word detector

CONV + BN + RELU (3 × 3), (1 × 1) e(x) 256×H/4×W/4 W1 128×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) W1 128×H/4×W/4 W2 32×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) W1 128×H/4×W/4 W3 32×H/4×W/4

CONV (1 × 1), (1 × 1) W2 128×H/4×W/4 Text foreground map 2×H/4×W/4
CONV + RELU (1 × 1), (1 × 1) W3 128×H/4×W/4 Text geometry map 32×H/4×W/4

Char detector

CONV + BN + RELU (3 × 3), (1 × 1) e(x) 256×H/4×W/4 C1 128×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) C1 128×H/4×W/4 C2 32×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) C1 128×H/4×W/4 C3 32×H/4×W/4

CONV (1 × 1), (1 × 1) C2 128×H/4×W/4 Char foreground map 32×H/4×W/4
CONV + RELU (1 × 1), (1 × 1) C3 128×H/4×W/4 Char geometry map 32×H/4×W/4

Char recognizer

CONV + BN + RELU (3 × 3), (1 × 1) e(x) 256×H/4×W/4 R1 128×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) R1 128×H/4×W/4 R2 32×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) R2 128×H/4×W/4 R3 32×H/4×W/4

CONV (1 × 1), (1 × 1) R3 94×H/4×W/4 Char recognition map 32×H/4×W/4

Alpha

CONV + BN + RELU (3 × 3), (1 × 1) e(x) 256×H/4×W/4 A1 128×H/4×W/4
CONV + BN + RELU (3 × 3), (1 × 1) A1 128×H/4×W/4 A2 32×H/4×W/4

Upsampling - A2 32×H/4×W/4 A3 32×H×W
CONV + BN + RELU (3 × 3), (1 × 1) x 3×H×W A4 32×H×W
CONV + BN + RELU (3 × 3), (1 × 1) A3 and A4 64×H×W A5 32×H×W
CONV + BN + RELU (3 × 3), (1 × 1) A5 32×H×W A6 32×H×W

CONV + Sigmoid (3 × 3), (1 × 1) A6 32×H×W Alpha for decomposition 3×H×W

Font CONV + BN + RELU (3 × 3), (1 × 1) etb(x) 256× 1× 1 F1 128× 1× 1
CONV (1 × 1), (1 × 1) F1 128× 1× 1 Font categories 100× 1× 1

Effects visiblity
CONV + BN + RELU (3 × 3), (1 × 1) etb(x) 256× 1× 1 V1 128× 1× 1

CONV (1 × 1), (1 × 1) V1 128× 1× 1 Shadow visibility 2× 1× 1
CONV (1 × 1), (1 × 1) V1 128× 1× 1 Border visibility 2× 1× 1

Effects params

CONV + BN + RELU (3 × 3), (1 × 1) etb(x) 256× 1× 1 P1 128× 1× 1
CONV + Tanh (1 × 1), (1 × 1) P1 128× 1× 1 Shadow offset 2× 1× 1

CONV + Sigmoid (1 × 1), (1 × 1) P1 128× 1× 1 Shadow blur 1× 1× 1
CONV (1 × 1), (1 × 1) P1 128× 1× 1 Border weights 5× 1× 1


