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1. Introduction
In the supplementary material we present experiments on

images of dog (Sec. 2), further implementation details (Sec.
3), method analyses (Sec. 4), qualitative photorealism com-
parison to other methods (Sec. 5), additional ablation study
details (Sec. 6), limitations (Sec. 7), additional results (Sec.
8) and an accompanying video featuring a plethora of con-
trol results (including explicit control examples of human
faces, paintings and dogs). We recommend to watch the
supplementary video on our project page.

2. Dog generation
In this experiment we aim to control the identity and pose

of dogs, to demonstrate our capability to generalize to addi-
tional domains other than human faces.

Implementation details: We use AFHQ [6], 5,239 dog
face images downsampled to 512x512 resolution. We use
StyleGAN2 with non-leaking augmentation [14] as before,
for paintings. For preserving dog IDs we use two differ-
ent models (M0

ID, M1
ID). M0

ID is a dog-face recognition
model DogFaceNet [18]. We noticed that DogFaceNet of-
ten recognizes two dogs to be the same if a similar pattern is
present on their heads, even if they are of different breeds.
To overcome this issue, we use ResNet18 [12] trained on
ImageNet [7] as M1

ID (the penultimate layer is used for the
distance comparison). We use this model since of the 1K
classes in the ImageNet challenge, 90 are dog-breeds. For
Mpose we use the same pose detection network as for hu-
man faces and paintings [20].

Photorealism: The FID scores are 8.74 and 8.22 for our
controlled and for the baseline models, respectively.

Qualitative evaluation: Fig. 1 shows precise control
over dog pose using Epose. We show that the pose esti-
mation network was able to provide enough guidance to the
GAN even though the domain gap between dog and human
faces is quite large. Since dogs are rarely photographed
from below, our model was not able to generate images of
dogs with a positive pitch. Unlike humans, dogs exhibit a
large variability in head-roll, therefore the model was able

Yaw=30◦ 15◦ 0◦ −15◦ −30◦

Roll=20◦ −20◦ 0◦ Pitch=−10◦ −20◦

Figure 1: Controlling head pose in dog images: Genera-
tion results using Epose.

to capture this aspect well.

3. Implementation details

In this section we provide further implementation details
of our method and additional details on our explicit control
experiment.

3.1. GAN-control implementation

Table 1 shows the dimensions of our latent sub-vectors
zk, wk and the dimensions of our per attribute control in-
puts yk. Our GANs are based on the StyleGAN2 [16]1

framework. Next we list our contrastive loss components,
lk, and the corresponding models, Mk, used to compute
each component:

Face generation:
• ID: ArcFace [8]2 embedding vector outputs are com-

pared using the cosine distance.
• Pose: HopeNet [20]3 yaw, pitch and roll outputs are

compared using L1.

1https://github.com/rosinality/stylegan2-pytorc
h

2https://github.com/TreB1eN/InsightFace Pytorch
3https://github.com/natanielruiz/deep-head-pose

1

https://alonshoshan10.github.io/gan_control/
https://github.com/rosinality/stylegan2-pytorch
https://github.com/rosinality/stylegan2-pytorch
https://github.com/TreB1eN/InsightFace_Pytorch
https://github.com/natanielruiz/deep-head-pose


Attribute dim zk dim wk dim yk Description of yk

Faces
ID 128 128
Pose 64 64 3 yaw, pitch and roll
Exp. 64 64 64 β of 3DMM
Illum. 64 64 27 γ of 3DMM
Age 64 64 1 yo
Hair c. 64 64 3 Average RGB value
Other 64 64

Paintings
ID 128 128
Pose 64 64 3 yaw, pitch and roll
Exp. 64 64 64 β of 3DMM
Age 64 64 1 yo
Style 128 128
Other 64 64

Dogs
ID 192 192
Pose 192 192 3 yaw, pitch and roll
Other 128 128

Table 1: Dimensionalities of latent sub-vectors and con-
trol inputs: the table shows the dimensions of zk, wk and
yk for each of the attributes k.

• Expression: each model output of the ESR [22]4 en-
semble is concatenated to a vector and compared using
L1.

• Illumination: R-Net [10]5 γ output is compared using
L1.

• Age: Dex [19]6 outputs are compared using L1.
• Hair color: We compute masks for the hair regions of

the generated images using PSPNet [23]7. Then, the
average RGB color of each hair region is calculated to
be compared using L1. For hair regions with less pix-
els then a certain threshold the loss is not calculated,
taking into account the possibility that the person in
the image is bald.

Painting generation:
• ID, pose, expression, age: same as for face genera-

tion.
• Artistic style: we use Gatys’ et al. [11] and John-

son’s et al. [13] style loss. Intermediate layers of
VGG16 [21] are extracted, their Gram matrices are cal-
culated, flattened and compared via L2.

4https://github.com/siqueira-hc/Efficient-Facia
l-Feature-Learning-with-Wide-Ensemble-based-Conv
olutional-Neural-Networks

5https://github.com/microsoft/Deep3DFaceReconst
ruction

6https://data.vision.ee.ethz.ch/cvl/rrothe/imdb
-wiki/

7https://github.com/YBIGTA/pytorch-hair-segment
ation

Dog generation:
• ID0: DogFaceNet [18]8 outputs are compared using
L1.

• ID1: the penultimate layer of ResNet18 [12], trained
for ImageNet [7] classification is compared using L1.

• Pose: same as for face generation.

For the second training phase of all the domains, the
attribute values yki for the datasets {{wk

i , y
k
i }

Ns
i=1}Nk=1 are

computed using the above models, Mk, with the exception
that the expression attribute values yexpi are computed using
the β output of R-Net [10] corresponding to the expression
coefficients of the 3DMM [5].

3.2. Explicit control analysis implementation

In Section 4.1 of the main submission, we have per-
formed quantitative analysis of the per-attribute control pre-
cision, comparing our approach with DFG [9] and CON-
FIG [17]. In this Section we add some implementational
details on how we made the quantitative analysis compara-
ble between the methods.

• The age control precision is reported only for our
method as it is not handled by the other two methods.

• CONFIG’s expression, illumination and hair color
controls are semantically different from Ours, and
therefore are not suitable for comparison. Moreover, as
the expression and illumination have different dimen-
sionalities, this further complicates direct comparison.

• Ours’ and CONFIG’s pose were predicted using
HopeNet [20]. DFG’s pose was predicted using the
R-Net’s [10] output θ, converted to degrees. This is
done for the sake of comparison fairness, in order not
to degrade DFG’s performance as a result of using a
non-compatible pose estimation model (DFG gener-
ates images aligned for R-Net).

• All methods used the truncation trick with ψ = 0.7
(Ours and DFG used the attribute-preserving trunca-
tion trick proposed in [9]).

8https://github.com/GuillaumeMougeot/DogFaceNet

https://github.com/siqueira-hc/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
https://github.com/siqueira-hc/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
https://github.com/siqueira-hc/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
https://github.com/microsoft/Deep3DFaceReconstruction
https://github.com/microsoft/Deep3DFaceReconstruction
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
https://github.com/YBIGTA/pytorch-hair-segmentation
https://github.com/YBIGTA/pytorch-hair-segmentation
https://github.com/GuillaumeMougeot/DogFaceNet
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Figure 2: Qualitative control-by-example ablation study

4. Analysis

4.1. Qualitative control-by-example ablation study

In Fig. 2 we sample three source latent vectors and four
target latent vectors. We modify the source images by sub-
stituting incrementally growing subsets of their sub-vectors,
wk, with the corresponding ones from the target images.
We then validate that, perceptually, the resulting image cor-
responds to the correct combination of the source (unmodi-
fied) and the target (modified) attributes. From the Fig. 2 we
observe that all of our unmodified controlled attributes are
well preserved and the modified attributes correspond to the
target. For example, looking at the Source #2 and Target #3
at Fig. 2(a), note that the person’s expression (smiling) is
preserved while the head orientation changed accordingly
(looking to the right). As expected, looking at the same

source-target pair at Fig. 2(b), note that both the source’s
head orientation and expression changed accordingly (look-
ing to the right and sad). We also note that some correlations
of non-controlled attributes within the dataset are partially
encoded in the GAN’s latent space. For example, in Source
#2, the background changes as we modify the illumination
(Fig. 2(c) vs (d)). This is expected as images with high-
intensity illumination usually occur outdoors, while low-
intensity illumination may occur indoors or at night. Anec-
dotally, in Source #2 and Target #2 a microphone appears
when introducing a more serious expression.

4.2. Disentangled projection ablation study

In this section we provide a qualitative ablation study
of the proposed method for disentangled projection. First,
we project the images to the disentangled latent space of
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Figure 3: PCA of embedding space: we present a visu-
alization of the sub-vector spaces (wpose,wage and whair)
for 10K samples projected to their corresponding truncated
two-dimensional PCA sub-spaces. The color-coding of
points in (a) and (b) correspond to the predicted values of
yaw and pitch in degrees, respectively. It appears that the
first principal component corresponds to yaw while the sec-
ond corresponds to pitch. The color-coding in (c) corre-
sponds to the predicted age in years. The first principal
component of the age latent space is enough to explain 64%
of the variation. The color-coding in (d) represents the esti-
mated average hair color for each point in the latent space.
It appears that there is a rough correlation between hue and
saturation to the first and second principal components, re-
spectively.

a trained GAN. Second, we modify the sub-vectors associ-
ated with pose, illumination and age. We show four types
of projection methods: (a) naı̈ve projection to latent space
W , (b) projection to the extended latent spaceW+ [4], (c)
projection to a partially extended latent space, where we
only extend the sub-spaces associated with ID and other
W+

ID,other, and (d) the same projection as (c) with an ad-
ditional constraint that the remaining sub-vectors reside on
approximated linear sub-spaces of their corresponding man-
ifolds. We achieve the above using the following approach:
we perform PCA for each latent subspace of 10K randomly
sampled sub-vectors w, where the number of components
are selected so as to preserve 50% of the variance. In prac-
tice, this number is very low. For expression, pose, illumi-
nation and hair - two components. For age only one compo-
nent. Visualizations of these spaces are presented in Fig. 3.
During the optimization process, after each gradient descent

step, we linearly project the latent sub-vectors to the trun-
cated PCA spaces and re-project them back to their corre-
sponding spaces. We present visual results of selected im-
ages in Fig. 4. The first column shows the real input image.
The second column shows the images that were created by
the GAN using the projected latent vectors. The rest of the
columns show the images generated using the projected la-
tent vector and explicitly controlling the pose, illumination
or age sub-vectors via Epose, Eillum or Eage. Images in
the first row (projection method a) suffer from inaccurate
reconstruction, identity loss and severe artifacts (for an ex-
treme example, see third person). The images in the second
row (projection method b) exhibit a significantly better re-
construction. However, when modifying the sub-vectors of
other attributes, the image’s quality deteriorates and strong
artifacts are visible. This is prominently exhibited in the un-
natural colors in the images of the first person. The last two
rows of each person (projection methods c and d) demon-
strate that using the techniques described above these ar-
tifacts are substantially mitigated, leading to images with
high reconstruction accuracy, that preserve the identity and
remain artifact-free.
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Figure 4: Disentangled projection ablation study [1, 2, 3].



CONFIG [17] (with truncation trick ψ = 0.7)

DFG [9] (with truncation trick ψ = 0.7)

Ours (with truncation trick ψ = 0.7)

Figure 5: Qualitative comparison: We generated a random batch of 18 images, for each one of the methods. Rows 1-2,
CONFIG [17] with the default settings for the truncation trick (ψ = 0.7). Rows 3-4, DFG [9] with the default settings for the
truncation trick (ψ = 0.7). Rows 5-6, Our results with the truncation trick set to ψ = 0.7.

5. Qualitative comparison
In addition to the quantitative photorealism comparisons

conducted, we further demonstrate the image quality dif-
ferences between all methods with qualitative examples.
Fig. 5 presents images generated by CONFIG, DFG and
our method. We use the truncation trick with ψ = 0.7 for
all generations. Ours and DFG use the attribute-preserving
truncation trick.
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Figure 6: Ours vs. end-to-end expression control

6. Ablation study - additional details

In this section we provide implementation details and ad-
ditional qualitative comparisons for the ablation study.

6.1. E2E qualitative comparison and implementa-
tion details

The end-to-end model is trained in a single training
phase. The architecture of the end-to-end model is the same
as the final architecture we use for inference after the sec-
ond training phase of our original approach (see architec-
ture under inference in Figure 2 of the main paper). We
derive a feasible set of input attribute control values based
on the ones inferred from the actual samples in the FFHQ
dataset. Practically for each image in the FFHQ dataset
(70K images) we extract all its attributes via the pre-trained
predictors, resulting in five attribute datasets of size 70K
each (corresponding to pose, expression, illumination, age
and hair color). We experimented with several options of
training such an end-to-end approach. The options vary in
the different configurations of the attribute matching loss
coefficients and scheduling mechanisms (all training runs
that used the attribute matching loss starting from the first
iteration diverged after a few iterations). In the paper we
present results of two models trained end-to-end, both used
the matching loss starting from the 20K’s iteration (when
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Figure 7: Ours vs. end-to-end illumination control

the generated images start to resemble faces). Figures 6, 7, 8
and 9, 10 show qualitative comparisons of our approach vs.
E2E. This comparison is in agreement with the quantitative
results presented in the main paper where the control preci-
sion and image quality are inferior to our approach.

6.2. NoDis implementation details

The motivation for our design choices are simplicity and
fair comparison. The encoder (E) architecture consists of:
N per-attribute encoders and an ID encoder, concatenation
and an aggregating encoder. First, each attribute is embed-
ded using a per-attribute encoder. Then, all sub-encoders’
output vectors are concatenated and passed through a single
aggregating encoder that outputs the StyleGAN2’sW latent
vector. When training, the inputs to E are the predicted at-
tributes and the ID (predicted ArcFace embedding vector).
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Figure 8: Ours vs. end-to-end hair color control

7. Limitations

Next, we elaborate on some of the limitations that we
encountered during our experimentation. The leftmost
columns of Fig. 11 shows examples in which the originally
generated ID is of a child. In some of these cases, increas-
ing the age does not necessarily translate into naturally ma-
turing process of the person’s head, but into appearance of
wrinkles and other skin deformation artifacts. We hypothe-
size that this happens due to the limitations of our age pre-
diction network, which was not intended to address ages
below 15 and to the fact that face geometry mostly does not
change after the age of 15, but does change significantly for
younger ages.

Fig. 12 shows limitations of our pose control. For some
controlled pose angles, severe artifacts appear in the gener-
ated images. This is to be expected as these poses are out of
the distribution of poses appearing in the FFHQ dataset.

In Fig. 13 we show that in some cases of older men, the
hair color is controlled by the age rather then by input hair
color. We attribute this to the strong biases present in the
FFHQ data set, related to the whitening hair of elderly men.

Another limitation we have noticed is that our expression
control does support closed eyes or asymmetric eyebrows.
This might be due to the insufficient representation of such
faces in the FFHQ datasets.

Yaw=0◦

Pitch=0◦
30◦

0◦
−30◦

0◦
0◦

20◦
0◦

−20◦

E
2E

E
2E

-1
0x

O
ur

s

Figure 9: Ours vs. end-to-end pose control

In Fig. 14 we show that the IDs of the generated dogs
are not preserved well when pitch is modified. We provide
two possible explanations: (a) the correlation between dog
size and pitch in the dataset, i.e., small breeds are usually
photographed at even or positive pitch, while large breeds
tend to be photographed from above; and (b) the limited
capacity of DogFaceNet, the recognition model used when
training the GAN. The model was trained on a relatively
small dataset of 8,363 images of 1,393 dogs.

Our approach does not rely on an ad-hoc facial prior
such as the 3DMM. Instead, it relies on deep models trained
on similar but different domains than that used to train our
GAN (see Sec. 3 for details). In some cases we observe that
such an approach successfully overcomes the domain gap,
as with the case of the head-pose estimation model trained
on the domain of human faces was accurate when applied
to dogs and paintings, while in other cases, such as Dog-
FaceNet, the model’s accuracy was insufficient.

To conclude, we believe that much of our model’s lim-
itations are either caused by inherent biases in the datasets
or are due to limitations of the pre-trained models on which
our method relies.
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Figure 10: Ours vs. end-to-end age control

Original latent Age=15 yo 40 yo 70 yo

Figure 11: Age limitations: We observed that for some
unmodified latent vectors, w, which were used to produce
images of young children or infants, the age control tends
to provide unrealistically or not compatible with the input
age, results. The leftmost column shows results of the un-
modified latent vectors and the other columns are controlled
results using Eage with the above inputs.

Original
latent

Yaw=0◦ −45◦ −60◦ −90◦

Original
latent

Pitch=0◦

Roll=0◦

Yaw=0◦

Pitch=45◦ Pitch=−45◦ Roll=20◦

Figure 12: Pose limitations: We observe appearance of se-
vere artifacts when the pose angles are out of the range of
possible angles appearing in the FFHQ dataset [15]. Rows
1-2 show deterioration of the generated images when yaw
is set lower then −45◦. Row 3 shows that for extreme pitch
angels the image deteriorates and that for roll angels the im-
age gets corrupted. This is reasonable as there are no images
in FFHQ with a noticeable roll.

8. Additional Results
Figures 15, 16, 17, 18 and 19 show additional results

for explicitly controlling human face pose, illumination,
expression, age and hair color, respectively. Figures 20
and 21 show additional results of controlling paintings age
and pose, respectively. Fig. 22 shows additional results for
controlling dogs’ poses.
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Figure 13: Hair color limitations: We observed that for
some generated images the hair color is not solely depended
on whair as expected. This happens mostly for generated
images of older men. As can be seen in rows 4-6, for some
hair color inputs (mostly bright ones), yhair, when the age
increases the hair whitens.

Yaw=−20◦

Pitch=−30◦
0◦ 30◦

Figure 14: Dog pitch limitations: We noticed that chang-
ing the dog’s pitch is effecting the dog’s identity (or breed).
This may be due to the small size of the dataset and due
to the fact that small dogs tend to be photographed at face
level rather than from above.
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Figure 15: Controlling pose



Illum. 1 Illum. 2 Illum. 3 Illum. 4 Illum. 5 Illum. 6 Illum. 7 Illum. 8 Illum. 9 Illum. 10

Figure 16: Controlling illumination
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Figure 17: Controlling expression
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Figure 18: Controlling age



Color 111 Color 222 Color 333 Color 444 Color 555 Color 666 Color 777 Color 888 Color 999 Color 101010

Figure 19: Controlling hair color



Age=15 yo 21.66 yo 28.33 yo 35 yo 41.66 yo 48.33 yo 55 yo 61.66 yo 68.33 yo 75 yo

Figure 20: Controlling paintings age
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Figure 21: Controlling paintings pose
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Figure 22: Controlling head pose in dog images
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Tadas Baltrušaitis, Matthew Johnson, and Jamie Shotton.
CONFIG: Controllable Neural Face Image Generation. In
European Conference on Computer Vision (ECCV), 2020. 2,
6

[18] Guillaume Mougeot, Dewei Li, and Shuai Jia. A Deep
Learning Approach for Dog Face Verification and Recogni-
tion. In PRICAI 2019: Trends in Artificial Intelligence, pages
418–430, Cham, 2019. Springer International Publishing. 1,
2

[19] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex:
Deep Expectation of Apparent Age from a Single Image. In
IEEE International Conference on Computer Vision Work-
shops (ICCVW), December 2015. 2

[20] Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-
Grained Head Pose Estimation Without Keypoints. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, June 2018. 1, 2

[21] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In
3rd International Conference on Learning Representations,
ICLR, 2015. 2

[22] Henrique Siqueira, Sven Magg, and Stefan Wermter. Ef-
ficient Facial Feature Learning with Wide Ensemble-based
Convolutional Neural Networks, Feb 2020. 2

[23] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid Scene Parsing Network. In
CVPR, 2017. 2

http://www.flickr.com/photos/cfccreates/8577115747
http://www.flickr.com/photos/cfccreates/8577115747
http://www.creativecommons.org/licenses/by/2.0
http://www.creativecommons.org/licenses/by/2.0
http://www.flickr.com/photos/onionboy/7332990776
http://www.flickr.com/photos/onionboy/7332990776
http://www.creativecommons.org/licenses/by-nc/2.0
http://www.creativecommons.org/licenses/by-nc/2.0
http://www.flickr.com/photos/62487011@N08/28696918755
http://www.flickr.com/photos/62487011@N08/28696918755
http://www.creativecommons.org/licenses/by-nc/2.0
http://www.creativecommons.org/licenses/by-nc/2.0

