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Figure 1. More examples of our X4K1000FPS dataset, which contain diverse motions in 4K-resolution of 1000 fps. The numbers below
the examples are the magnitude means of optical flows between two input frames in 30 fps. Please refer to the arXiv version to watch this
figure as a video clip.

1. Details of Proposed X4K1000FPS Dataset
1.1. Photographing Videos

In order to provide a wide range of object motions and
various camera motion types at different speeds in diverse
locations, the shooting rules were guided as follows: (i)
shooting various objects independently moving while the
camera is stationary, (ii) shooting videos from a moving car
(fast translated videos), (iii) shooting while walking (mov-
ing at normal speed), (iv) shooting with the camera in irreg-
ular motion trajectories at non-uniform speeds, (v) shooting
with zooming out or in and panning at the same time. Be-
sides, the contents of the videos also include various objects
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(crowds, cars, trains, plants, animals, boats, traffic signs,
signboards, waterfalls, buildings, etc.) in various types of
places such as stadiums, stations, beaches, markets, parks,
rivers, playgrounds, etc. Fig. 1 shows some representative
thumbnails of spatiotemporally down-sampled 4K video at
15 fps for a visualization purpose. As shown in Fig. 1 in the
main paper and Fig. 1 in this Supplementary Material, very
extreme scenes including various camera motions, zoom-
ing, translations, speeds, occlusions and objects are con-
tained in the X4K1000FPS dataset.

1.2. Test Dataset: X-TEST

We manually select the consecutive 32 frames for each
test scene by considering the degrees of occlusion, opti-
cal flow magnitudes and diversity among 5,000 frames. We



compose nonuplets by sampling every 4 frames from 32
frames of each test scene. Since the frame rates of videos
are often given in multiples of 30 in VFI benchmark datasets
[8, 9] or real-world industries, we approximate that our test
videos are set to 960 fps (= 32×30 fps) instead of 1,000 fps.
Therefore, two input frames that are 32 frames apart are re-
garded as part of a 30 fps (= 960 / 32) video and converted
to 240 fps by ×8 multi-frame interpolation in the evaluation
phase.

1.3. Train Dataset: X-TRAIN

To compose a valuable training dataset from our enor-
mous videos for video frame interpolation, we select train-
ing samples based on the value of the occlusion map esti-
mated by IRR-PWC [3]. The occlusion maps are approx-
imated on the spatially down-sampled (×1/4) and tem-
porally sub-sampled (×1/32) frames of the original 4K-
resolution 1000 fps videos. Each target frame is fed into
IRR-PWC with the previous and the next frames of the tar-
get frame, respectively. The resulting two occlusion maps
are averaged to get the bidirectional occlusion map.

Then, we divide the 4K-resolution frame into overlap-
ping patches of 768 × 768, which forms an 81 × 31 grid,
except for the boundary of the 4K-resolution frame. This is
because the boundary patches have undesirably large occlu-
sion values when there are translation motions. Similarly,
about 5,000 frames are divided into overlapping 154 clips
of 65 consecutive frames except for the boundary period in
the temporal dimension of the scenes. Thus, about 386K
(= 81 × 31 × 154) candidate training samples per scene of
the patch size of 768×768 and the lengths of 65 frames are
extracted from a 4K-resolution 1000 fps video. After that,
the candidate training samples whose bidirectional occlu-
sion value is the top 10% of those of all candidate training
samples remained, and the others are discarded. Finally, to-
tal 4,408 training samples are sparsely selected as training
data to prevent similar samples from being selected to main-
tain the diversity of the training samples.

2. Details of Architecture of XVFI-Net
In addition to Fig. 3 and 4 in the main paper, we present

the detailed architectures of sub-networks of XVFI-Net in
the case of the module scale factor M = 4 in Table 1 to
Table 5. The series of rows represents the consecutive oper-
ations. The first column represents each layer’s operation,
and H,W and C indicate the spatial ratio with respect to
bicubicly downsampled (×1/2s) input frames Isi for each
scale s and the number of channels of the output tensors,
respectively. The last column denotes the names of some
output tensors, which are worth mentioning. We omit the
names of the output tensors if they are just intermediate ten-
sors in the sub-networks. When the multiple tensors are in-
put to each layer, they are concatenated channel-wise. ‘res-

block’ represents a residual block which consists of conv2d
- relu - conv2d - identity addition. The stride of the convo-
lutional layer is set to 1, if not mentioned. The convolution
filter sizes are 3 × 3 and 4 × 4 for the strides of 1 and 2,
respectively.

As shown in Table 1, the Feature Extraction Block is
a simple residual block-based sub-network. On the other
hand, the flow estimation sub-networks, the BiFlownet and
TFlownet, have a simple auto-encoder architecture to en-
large the receptive field as shown in Table 2, 3 and 4. The
Refinement Block has a U-Net [6]-based architecture as in
Table 5. The parameters of each sub-network are shared
for all scale levels except for the BiFlownet at the lowest
scale depth S, which is isolated in Table 2. The bidirec-
tional flows are estimated directly from two input features
CS

0 , C
S
1 at the lowest scale level S, because there does not

exist any provided initial flow.
Efficiency of XVFI-Net During Inference. The

BiOF-T module can start from any down-scaled level, while
the BiOF-T module can be skipped in the down-scaled lev-
els (s = 1, . . . , Stst) as described in Fig. 3 in the main pa-
per. By doing so, our XVFI-Net framework can accelerate
run time about 22% faster compared to the full-recursion
framework where both BiOF-I and -T modules are pro-
cessed together in all scale levels for 4K video, when Stst =
5. Besides, the additional runtimes induced by the smaller
down-scaled levels (s > 0) are negligible since the run-
times of the BiOF-I module at down-scaled levels are much
smaller than those of BiOF-I and BiOF-T modules at the
original scale (s = 0).

As shown in the first scene with even extreme back and
forth motions of a propeller with zoom-out, our XVFI-Net
can surprisingly capture such a complex motion for VFI,
but the SOTAs fail to interpolate the sophisticated tips of
the propeller pointed by the yellow arrows. For the second
scene, even while riding a fast-moving car, XVFI-Net better
captures far tiny structures such as electric wires seen at the
left part and a closer pole with a large pixel displacement
pointed by the yellow arrows. For the third scene, the right-
most front car moves very fast, so all the previous meth-
ods fail to capture it, denoted by the yellow arrow, yielding
severe artifacts (structural distortions). On the other hand,
XVFI-Net precisely captures the especially right edges of
the rightmost car. Finally, in the last scene even with the ex-
tremely hand-shaken frames, the XVFI-Net can also synthe-
size repeating similar stairs but all SOTAs tend to generate
baggy artifacts. As a result, XVFI-Net significantly better
handles large pixel displacements due to extreme motion
and huge spatial resolutions.

3. Additional Qualitative Results
Visual Comparisons for VFI methods. We provide

additional qualitative results on X-TEST (4K) in Fig. 2,



Operation H,W C Remarks
input I0i 1 3 I0i

conv2d - relu 1 64 -
conv2d - relu 1/2 64 -

conv2d 1/4 64 Feati
resblock (×2) - add to Feati 1/4 64 C0

i

conv2d (×s) 1/4 × 1/2s 64 Cs
i

Table 1. The detailed architecture of the Feature Extraction Block of XVFI-Net. Cs
i is obtained by applying the last convolutional layer to

C0
i s times recurrently. The parameters are temporally shared for the two input frames (i = 0, 1).

Operation H,W (× 1/2S) C Remarks
input [CS

0 , CS
1 ] 1/4 64×2 -

conv2d (stride 2) - relu 1/8 128 -
conv2d (stride 2) - relu 1/16 256 -

NN upscale - conv2d - relu 1/8 128 -
NN upscale - conv2d - relu 1/4 64 -

conv2d 1/4 2+2+1+1 FS
01, FS

10, zS01, zS10

Table 2. The detailed architecture of the auto-encoder-based BiFlownet of XVFI-Net at the lowest scale depth.

Adobe240fps [8] (HD) in Fig. 3 and Vimeo90K [9] in Fig.
4 by each setting described in the main paper.

Visualization of Components of XVFI-Net. Fig. 5
shows the visualization of optical flows and occlusion
masks of XVFI-Netv . As expected, estimated flows at the
upper level seem finer than those at the lower level (F 1

t0)
as shown in Fig. 5. The coarse-to-fine structure gradually
helps the whole XVFI framework boost the final VFI per-
formance at original scale s = 0 based on the occlusion
masks and the iteratively updated flows that are all learned
from scratch.

4. Failure Cases
Since we delicately select the scenes to compose ex-

tremely challenging X-TEST, there exist inevitably failure
patches within the same 4K frame result, where all com-
pared methods including XVFI-Net (Stst = 5), fail to accu-
rately interpolate the intermediate frames. Fig. 6 shows the
4K failure results (t = 0.5) including several failure patches
of ours because the input videos have very large magnitude
means of optical flows (196.5) attributed to large camera
shaking with the fast moving cars. Fig. 7 shows the failure
cropped patches. First, the tiny electric line, which is hard
to be distinguishable from static background, is failed to
be accurately interpolated by all methods including ours, as
indicated by a red arrow. Second, rotations of fast moving
car’s wheels are also challenging to be delicately synthe-
sized while considering the degree of rotations, as pointed
by two green arrows. On top of these, blurriness and abrupt
brightness or color change in the input frames would also

make all VFI methods challenging.
Please note that we have also provided all interpolated

results for all compared methods of both original and re-
trained versions on X-TEST to be publicly available at
https://github.com/JihyongOh/XVFI for easier
comparison.
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Operation H,W (× 1/2s) C Remarks
input [Cs

0 , C̃s
01] 1/4 64×2 -

conv2d 1/4 64 Ĉs
01

input [Cs
1 , C̃s

10] 1/4 64×2 -
conv2d 1/4 64 Ĉs

10

input [Ĉs
01, Ĉs

10,F̃ s
01, F̃ s

10] 1/4 64×2+2×2 -
conv2d (stride 2) - relu 1/8 128 -
conv2d (stride 2) - relu 1/16 256 -

NN upscale - conv2d - relu 1/8 128 -
NN upscale - conv2d - relu 1/4 64 -
conv2d - add to [F̃ s

01, F̃ s
10] 1/4 2+2+1+1 F s

01, F s
10, zs01, zs10

Table 3. The detailed architecture of the auto-encoder-based BiFlownet of XVFI-Net except for the lowest scale depth.

Operation H,W (× 1/2s) C Remarks
input [Cs

0 , Cs
1 , C̃s

t0, C̃s
t1,F̃ s

t0, F̃ s
t1] 1/4 64×4+2×2 -

conv2d (filter 1×1) - relu 1/4 64 -
conv2d (stride 2) - relu 1/8 128 -
conv2d (stride 2) - relu 1/16 256 -

NN upscale - conv2d - relu 1/8 128 -
NN upscale - conv2d - relu 1/4 64 -
conv2d - add to [F̃ s

t0, F̃ s
t1] 1/4 2+2+1 F s

t0, F s
t1, ms

Table 4. The detailed architecture of the auto-encoder-based TFlownet of XVFI-Net.
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Operation H,W (× 1/2s) C Remarks
input ([Cs

0 , Cs
1 , C̃s

t0, C̃s
t1]) 1/4 256 -

pixel-shuffle [7] (↑4) 1 16 PS
input [PS, F s

t0 ↑2, F s
t1 ↑2, Is0 , Is1 , Ĩst0, Ĩst1] 1 16+2×2+3×4 -

conv2d (stride 2) - relu 1/2 64 enc1
conv2d (stride 2) - relu 1/4 128 enc2
conv2d (stride 2) - relu 1/8 256 -

conv2d - relu 1/8 256 -
NN upscale - concat to enc2 1/4 384 -

conv2d - relu 1/4 128 -
NN upscale - concat to enc1 1/2 192 -

conv2d - relu 1/2 64 -
NN upscale - conv2d 1 1+3 ms, Ĩsr

Table 5. The detailed architecture of the U-Net [6]-based Refinement Block of XVFI-Net.
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Figure 2. Visual comparisons for VFI results (t = 0.5) on X-TEST for our and retrained SOTA methods with X-TRAIN. (*,*): occlusions
and optical flow magnitudes between the two input frames measured by IRR-PWC [3], respectively. Best viewed in zoom.
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Figure 3. Visual comparisons for VFI results (t = 0.5) on Adobe240fps for our and retrained SOTA methods with X-TRAIN. Best viewed
in zoom.



AdaCoFo DAINo BMBCoOverlapped inputs FeFlowo Ours G.T

Figure 4. Visual comparisons of AdaCoF [4], DAIN [1], BMBC [5], FeFlow [2], our XVFI-Netv and the corresponding ground truth on
the testset of Vimeo90K [9] triplet. Best viewed in zoom.

Interploated frameOverlapped inputs Occlusion maskCoarse flow 1
0tF Fine flow 0

0tF
0m0ˆ

tI

Figure 5. Visualization of optical flows and occlusion masks of XVFI-Netv . The coarse and fine flows are extracted at scale 1 and 0,
respectively.
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Figure 6. Failure cases of 4K result (t = 0.5) on X-TEST for our and retrained SOTA methods with X-TRAIN, including the corresponding
ground truth. Best viewed in zoom.

Overlapped two inputs (4096x2160) AdaCoFf FeFlowf DAINf XVFI-Net (Stst=5) GT

Figure 7. Failure cases of cropped results (t = 0.5) on X-TEST for our and retrained SOTA methods with X-TRAIN, including the
corresponding ground truth. Best viewed in zoom.




