
A. Discussion
A.1. Limitations

Our method has the following limitations:

1. Shift-equivariance of our generator is limited only to the step size equal to the size of a patch, i.e., one cannot take
a step smaller than the patch size. In our case, it equals 16 pixels for 2562-resolution generator and 64 pixels for
10242-resolution one. In this way, our generator is periodic shift-equivariant [55].

2. As shown in 9, connecting too different scenes leads to seaming artifacts. There are two ways to alleviate this: sampling
from the same distribution mode (after clustering the latent space, like in Figure 25) and increasing the distance between
the anchors. The latter, however, leads to repetitions artifacts, like in 10.

3. As highlighted in 3.3, infinite image generation makes sense only for datasets of images with spatially invariant statistics
and our method exploits this assumption. In this way, if one does not preprocess LSUN Bedroom with Algorithm 1, then
the performance of our method will degrade by a larger margin compared to TT [10] for non-infinite generation. How-
ever, after preprocessing the dataset, our method can learn to connect those “unconnectable” scenes (see Figure 12). This
limitation will not be an issue in practice because when one is interested in non-infinite image generation, then a non-
infinite image generator is employed. And when on tries to learn infinite generation on a completely “unconnectable”
dataset, then any method will fail to do so (unless some external knowledge is employed to rule out the discrepancies).

Figure 12: Connecting the “unconnectable” scenes of LSUN Bedroom. Though LSUN Bedroom is a dataset of images with
spatially non-invariant statistics (see Appendix C), our method is still able to reasonably connect its scenes after the dataset
is preprocessed with Algorithm 1.

4. Preprocessing the dataset with our proposed procedure in Section 3.3 changes the underlying data distribution since
it filters away images with spatially non-invariant statistics. Note that we used the same processed datasets for our
baselines in all the experiments to make the comparison fair.

5. Our proposed 1-FID metric does not capture possible stitching problems. To alleviate this, we additionally propose
spatial perceptual path length (SPPL) to catch too fast content changes: “walk” through the infinite image with the step
size of K pixels and compute the average perceptual distance between the current frame and the frame K pixels to the
right. We report it on Figure 27.

A.2. Questions and Answers
Q: What is spatial equivariance? Why is it useful? Is it unique to your approach, or other image generators also have it?
A: We call a decoder spatially-equivariant (shift-equivariant) if shifting its input results in an equal shift of the output. It

is not to be confused with spatial invariance, where shifting an input does not change the output. The equivariance property
is interesting because it is a natural property that one seeks in a generator, i.e., by design, we want a decoder to move
in accordance with the coordinate space movements. It was also shown that shift-equivariance improves the performance

Figure 13: Ablating the grid size of the ALIS generator on LHQ 2562 for patchwise generation. Reducing the grid size
improves the performance, but in the expense of not being able to do small steps in the coordinate space at test time. I.e. with
2⇥ 2 grid, one would achieve the highest FID score but will be able to generate an image only by large chunks (of size W/2)
which might be undesirable.

Table 2: Comparison of existing infinite image generators. We used LocoGAN [57] as our benchmark since it shares all the
features of previously developed infinite-texture image generators and was additionally tested on non-texture datasets. N/A
denotes “not applicable”: while1-GAN was trained on non-texture images, its generations are in the “texture-like” spirit.

SpatialGAN [20] PS-GAN [2] 1-GAN [29] LocoGAN [57] LocoGAN [57]+SG2 [57]+Fourier [42, 45]
Has local latents? X X X X X
Has global latents? X X X X X
Has periodic positional embeddings? X X X X
Not limited to a single image? X X X X
Was employed for non-texture datasets? N/A X X
Is big? X

[55] of both decoder and encoder modules. Traditional generators do not have it due to upsampling [55]. While we have
upsampling procedures too, in our case they do not break periodic shift-equivariance because they are patchwise.

Q: Why did you choose the grid size of 16?
A: The grid size of 16 allows to perform small enough steps in the coordinate space while not losing the performance

too much (as also confirmed by [25]). Small steps in the coordinate space are needed from a purely design perspective to
generate an image in smaller portions. In the ideal case, one would like to generate an image pixel-by-pixel, but this extreme
scenario of having 1⇥ 1 patches worsens image quality [43]. We provide the ablation study for the grid size in Figure 13.

Q: Why didn’t you compare against other methods for infinite image generation?
A: There are two reasons for it. First, to the best of our knowledge, there are no infinite generators of semantically complex

images, like LSUN Tower or nature landscapes — only texture-like images. This is why we picked “any-aspect-ratio” image
generators as our baselines: LocoGAN [57] and Taming Transformers [10]. Second, our LocoGAN+SG2+Fourier baseline
encompasses the previous developments in infinite texture synthesis (like [20, 2, 29]). It has the same architecture as the
state-of-the-art PS-GAN [2], but is tested not only on textures, but also semantically complex datasets, like LSUN Bedrooms
and FFHQ. See Table 2 for the benchmarks comparison in terms of features.

Q: How is your method different from panoramas generation?
A: A panorama is produced by panning, i.e. camera rotation, while our method performs tracking, i.e. camera transition.

Also, a (classical) panorama is limited to 360� and will start repeating itself in the same manner as LocoGAN does in Figure 7.

Q: How is your method different from image stitching?
A: Image stitching connects nearby images of the same scene into a single large image, while our method merges entirely

different scenes.

Q: Does your framework work for 2D (i.e., joint vertical + horizontal) infinite generation? Why didn’t you explore it in
the paper?

A: Yes, it can be easily generalized to this setup by positioning anchors not on a 1D line (as shown in Figure 2), but on

a 2D grid instead and using bilinear interpolation instead of the linear one. The problem with 2D infinite generation is that
there are no complex datasets for this, only pattern-like ones like textures or satellite imagery, where the global context is
unlikely to span several frames. And the existing methods (e.g., LocoGAN [57], 1-GAN [29], PS-GAN [2], SpatialGAN
[20], TileGAN [11], etc.) already mastered this setup to a good extent.

Q: How do you perform instance normalization for layers with 16 ⇥ 16 resolution? Your patch size would be equal to
1⇥ 1, so �(x) = NaN (or 0) for it.

A: In contrast to CocoGAN[25], we use vertical patches (see Appendix B), so the minimal size of our patch is 16 ⇥ 1,
hence the std is defined properly.

Q: Why1-FID for LocoGAN is so high?
A: LocoGAN generates a repeated scene and that’s why it gets penalized for mode collapse.

B. Implementation details
B.1. Architecture and training

We preprocess all the datasets with the procedure described in Algorithm 1 with a threshold parameter of 0.7. We train all
the methods on identical datasets to make the comparison fair.

As being said in the main paper, we develop our approach on top of the StyleGAN2 model. For this, we took the official
StyleGAN2-ADA implementation and disabled differentiable augmentations [22, 56] since Taming Transformers [10] do not
employ such kind of augmentations, so it would make the comparison unfair. We used a small version of the model (config-e
from [24]) for our 2562 experiments and the large one (config-f from [24]) for 10242 experiments. They differ in the number
of channels in high-resolution layers: the config-f-model uses twice as big dimensionalities for them.

We preserve all the training hyperparameters the same. Specifically, we use � = 10 for R1-regularization [31] for all
StyleGAN2-based experiments. We use the same probability of 0.9 for style mixing. In our case, since on each iteration we
input 3 noise vectors wl,wc,wr we perform style mixing on them independently. Following StyleGAN2, we also apply the
Perceptual Path Loss [24] regularization with the weight of 2 for our generator G. We also use the Adam optimizer to train
the modules with the learning rates of 0.0025 for G and D and betas of 0.0 and 0.99.

As being said in the main paper, CoordConst and CoordConv3x3 are analogs of StyleGAN’s Const block and Conv3x3
respectively, but with coordinates positional embeddings concatenated to the hidden representations. We illustrate this in
Figure 16. As being said in Section 3, our Conv3x3 is not modulated because one cannot make the convolutional weights be
conditioned on a position efficiently and we use SA-AdaIN instead to input the latent code. Const block of StyleGAN2 is just
a learnable 3D tensor of size 512⇥ 4⇥ 4 which is passed as the starting input to the convolution decoder. For CoordConst
layer, we used padding mode of repeat for its constant part to make it periodic and not to break the equivariance.

To avoid numerical issues, we sampled � only at discrete values of the interval [0, 2d�W], corresponding to a left border
of each patch.

Each StyleGAN2-based model was trained for 2500 kimgs (i.e. until D saw 25M real images) with a batch size of 64
(distributed with individual batch size of 16 on 4 GPUs). Training cumulatively took 2.5 days on 4 V100 GPUs.

For Taming Transformer, we trained the model for 5 days in total: 2.5 days on 4 V100 GPUs for the VQGAN component
and 2.5 days on 4 V100 GPUs for the Transformer part. VQGAN was trained with the cumulative batch size of 12 and the
Transformer part — with 8. But note that in total it was consuming more GPU memory compared to our model: 10GB vs
6GB per a GPU card. We used the official implementation with the official hyperparameters1.

B.2. Patchwise generation

As being said in Section 3, following the recent advances in coordinate-based generators [25, 1, 43], our method generates
images via spatially independent patches, which is illustrated in Figure 15c. The motivation of it is to force the generator learn
how to stitch nearby patches based on their positional information and latent codes. This solved the “padding” problem of
infinite image generation: since traditional decoders extensively use padding in their implementations, this creates stitching
artifacts when the produced frames are merged naively, because padded values are actually filled with neighboring context
during the frame-by-frame infinite generation (see Figure 15a). A traditional way to solve this [20, 2, 57, 29] is to merge the
produced frames with overlaps, like depicted in Figure 15b.

1https://github.com/CompVis/taming-transformers

Upsample

!!
Mapping Network

!! !"

"! "! ""

!
CoordConst16×16×512

CoordConv 3x3

Upsample

SA-AdaIN

CoordConv 3x3

SA-AdaIN

CoordConv 3x3

SA-AdaIN

Add noise

Add noise

Add noise

16×16

32×32

Affine

Affine

Affine

#

Conv 1x1

Conv 1x1+
Figure 14: Full architecture of our G.

(a) Padding problem (b) Overlapped generation [20, 57, 2, 29, 10] (c) Patchwise generation [25, 43, 1]

Figure 15: (a) A padding problem that occurs with infinite image generation; (b, c) two strategies to alleviate it. For ALIS,
we use patchwise generation and show how to incorporate spatially varying global latent codes into it.

C. Which datasets are connectable?
In this section, we elaborate on the importance of having spatially invariant statistics for training an infinite image gen-

erator. Since we consider only horizontal infinite image generation, we are concerned about horizontally invariant statistics,
but the idea can be easily generalized to vertical+horizontal generation. As noted by [10], to train a successful “any-aspect-
ratio” image generator from a dataset of just independent frames, there should be images containing not only scenes, but also
transitions between scenes. We illustrate the issue in Figure 17. And this property does not hold for many computer vision
datasets, for example FFHQ, CelebA, ImageNet, LSUN Bedroom, etc. To test if a dataset contains such images or not and to

(a) Conv3x3

!"

(b) CoordConv3x3. Orange part of the hidden representation de-
notes coordinates embeddings.

Figure 16: Illustration of Conv3x3 and CoordConv3x3. For CoordConv3x3 there are different strategies on how to
compute coordinates embeddings, for ALIS, we use periodic positional encoding [42, 45].

LS
U

N
 T

ow
er

LS
U

N
 B

ed
ro

om
LH

Q

Figure 17: Random samples from LSUN Bedroom (top), LSUN Tower (middle) and LHQ (bottom). While LSUN Tower
and LHQ have (approximately) horizontally invariant statistics, for LSUN Bedroom this does not hold, which is highlighted
in red. For LSUN Bedroom, the first problem occurs due to walls: it is impossible to continue a sample to the left due to
wall hitting the camera. And there are no samples in LSUN Bedroom which would have the transition between those walls
directions. The second problem is in too-close-to-camera objects. We propose Algorithm 1 to test if the dataset is connectable
and to find a connectable subset of it. After preprocessing LSUN Bedroom, our algorithm can fit it, as shown in Figure 12.
The importance of this procedure is also confirmed by FID scores in Table 3.

extract a subset of good images, we propose the following procedure.

Given a dataset, train a binary classifier to predict whether a given half of an image is the left one or right one. Then, if
the classifier has low confidence on the test set, the dataset contains images with spatially invariant statistics, since image
left/right patch locations cannot be confidently predicted. Now, to extract the subset of such good images, we just measure
the confidence of a classifier and pick images with low confidence, as described in Algorithm 1.

To highlight the importance of this procedure, we trained our model on different subsets of LHQ and LSUN Tower,
varying the confidence threshold t. As one can see from Table 3, our procedure is essential to obtain decent results. Also the
confidence threshold should not be too small, because too few images are left making the training unstable.

As a classifier, we select an ImageNet-pretrained WideResnet50 and train it for 10 epochs with Adam optimizer and
learning rates of 1e-5 for the body and 1e-4 for the head. We consider only square center crops of each image.

Also, we tested our “horizontal invariance score” for different popular datasets and provide them in Table 4. As one can
see from this table, our proposed dataset contains images with much more spatially invariant statistics.

We used t = 0.95 for LHQ and t = 0.7 for LSUN datasets.

Algorithm 1: Extract a subset with (approximately) horizontally invariant statistics.
Input : Dataset D of (H ⇥W ⇥ C)-sized images
Input : Confidence threshold t.
Output: Dataset Dt ✓ D of horizontally invariant images.
Initialize a binary classifier C✓;
Split D into subsets Dtrain, Dval, Drest with ratio 2:1:7;
while not converged do

Sample a training batch X ✓ Dtrain;
for i 1 to |X| do

Randomly sample side s
(i) 2 {left, right};

if s(i) = left then
x
(i) x

(i)[:, : W/2] ; // Select the left half
y
(i) 0;

else
x
(i) x

(i)[:,W/2 :] ; // Select the right half
y
(i) 1;

end
end
Update C✓ based on training batch {x(i)

, y
(i)}|X|

i=1;
end
Evaluate C✓ on Drest to obtain scores for each image half R = (r(1)left , r

(1)
right, r

(2)
left , ..., r

(N)
left , r

(N)
right);

Set Dt {x(i)|x(i) 2 Drest ^max{r(i)left, r
(i)
right} < t};

Return Dt;

Table 3: FID scores of ALIS for different confidence thresholds t in Algorithm 1 on LHQ 2562 and LSUN Tower 2562.
Preprocessing the dataset with the proposed procedure is essential to obtain decent results, since it filters out “bad” images,
i.e. images with spatially non-invariant statistics. We select t = 0.7 for LSUN datasets and t = 0.95 for LHQ since
decreasing t filters away too many images which also hurts the FID score. “Dataset size” is the number of images remaining
after the filtering procedure. For t = 1, the dataset is untouched.

Method LSUN Tower 2562 LHQ 2562

FID Dataset size FID Dataset size
t = 1 17.51 708k 23.23 90k
t = 0.99 8.68 168k 10.18 50k
t = 0.95 8.85 116k 10.48 38k
t = 0.7 8.83 59k 11.49 19k
t = 0.5 9.73 41.5k 14.55 13k

D. Landscapes HQ dataset
To collect the dataset we used two sources: Unsplash2 and Flickr3. For the both sources, the acquisition procedure

consisted on 3 stages: constructing search queries, downloading the data, refining the search queries based on manually
inspecting the subsets corresponding to different search queries and manually constructed blacklist of keywords.

After a more-or-less refined dataset collection was obtained, a pretrained Mask R-CNN model was employed to filter out
the pictures which likely contained an object. The confidence threshold for “objectivity” was set to 0.2.

For Unsplash, we used their publicly released dataset of photos descriptions4 to extract the download urls. It was prepro-
cessed by first searching the appropriate keywords with a whitelist of keywords and then filtering out images with a blacklist

2https://unsplash.com/
3https://www.flickr.com/
4https://unsplash.com/data

Table 4: Spatial invariance scores for different datasets. We used Algorithm 1 to train a classifier and computed its mean
accuracy on Drest. In all the cases, we used center crops.

Dataset Mean Test Confidence
LSUN Bedroom 95.2%
LSUN Tower 92.7%
LSUN Bridge 88.6%
LSUN Church 96.1%
FFHQ 99.9%
ImageNet 99.8%
LHQ 82.5%

of keywords. A whitelist of keywords was constructed the following way. First, we collected 230 prefixes, consisting on
geographic and nature-related places. Then, we collected 130 nature-related and object-related suffixes. A whitelist keyword
was constructed as a concatenate of a prefix and a suffix, i.e. 230 ⇥ 130 = 30k whitelist keywords. Then, we extracted
the images and for each image enumerated all its keywords and if there was a keyword from our blacklist, then the image
was removed. A blacklist of keywords was constructed by trial and error by progressively adding the keywords from the
following categories: animals, humans, human body parts, human activities, eating, cities, buildings, country-specific sights,
plants, drones images (since they do not fit our task), human belongings, improper camera positions. In total, it included
300 keywords. We attach both the whitelist and the blacklist that were used in the supplementary. In total, 230k images was
collected and downloaded with this method.

For Flickr, we constructed a set of 80 whitelist keywords and downloaded images using its official API5. They were much
more strict, because there is no way to use a blacklist. In total, 170k images were collected with it.

After Unsplash and Flickr images were downloaded, we ran a pretrained Mask R-CNN model and removed those photos,
for which objectivity confidence score was higher than 0.2. In total, that left 60k images for Unsplash and 30k images for
Flickr.

We found, that even all the above procedures were not enough to eliminate all the noise, found in the data, downloaded
from the internet. So we manually filtered out a subset of 10k images which are guaranteed not to contain any noise and
represent high-quality landscape pictures. This constitutes “LHQ-base”: a manually constructed subset of LHQ with high-
quality images.

The images come in one of the following licenses: Unsplash License, Creative Commons BY 2.0, Creative Commons
BY-NC 2.0, Public Domain Mark 1.0, Public Domain CC0 1.0, or U.S. Government Works license. All these licenes allow
the use of the dataset for research purposes.

We depict 100 random samples from LHQ in Figure 18 and a word map of keywords in Figure 19.

E. Remarks on comparison to Taming Transformers
Using Taming Transformers (TT) [10] as a baseline is complicated for the following reasons:

• The original paper was mainly focused on conditional image generation. Since our setup is unconditional (and thus
harder), the produced samples are of lower quality and it might confuse a reader when comparing them to conditionally
generated samples from the original TT’s paper [10].

• It is not a GAN-based model (though there is some auxiliary adversarial loss added during training) — thus, in contrast
to LocoGAN or ALIS, it cannot be reimplemented in the StyleGAN2’s framework. This makes the comparison to
StyleGAN2-based models harder since StyleGAN2 is so well-tuned “out-of-the-box”. However, it must be noted that
TT is a very recent method and thus was developed with access to all the recent advances in generative modeling.
As being said in Section 5, we used the official implementation with the official hyperparameters for unconditional
generation training. In total, it was trained for twice as long compared to the rest of the models: 2.5 days on 4 V100
GPUs for the VQGAN part and 2.5 days on 4 V100 GPUs for the Transformer part.

• Autoregressivy inference makes it very slow at test time. For example, it took 8 days to compute FID and1-FID scores
on a single V100 GPU for a single experiment.

5https://www.flickr.com/services/api/

Figure 18: 100 random images from LHQ dataset, that we introduce in our work. It is a diverse dataset of very different
scenes and in high resolution � 10242. We downsized the images for this figure to avoid performance issues.

• Taming Transformer’s decoder uses GroupNorm layer [52]. GroupNorm, as opposed to other normalization layers
(like BatchNorm [19]) does not collect running statistics and computes from the hidden representation even at test-
time. It becomes problematic when generating an “infinite” image frame by frame, because neighboring frames use
different statistics at forward pass. This is illustrated in Figure 20. To solve the for1-FID, instead of generating a long
256⇥ (50000 ·256) image, we generated 500 256⇥ (100 ·256) images. Note that it makes the task easier (and improves
the score) because this increases the diversity of samples, which FID is very sensitive to.

Figure 19: A word map of keywords in the LHQ dataset.

Figure 20: Illustration of GroupNorm artifacts of TT [10] when frame-by-frame infinite generation is considered. Top:
normal samples, bottom: overlapped generation (see Figure 15). Since TT’s decoder uses GroupNorm [52], it computes
activations statistics across the whole image, i.e. it needs the whole image to be available simultaneously during inference. If
frame-by-frame generation is employed at test-time (to produce an infinite image, for example), then it leads to the illustrated
artifacts.

F. Additional samples

G. Spatial Perceptual Path Length
Our proposed 1-FID does not capture stitching problems. To alleviate this, we propose spatial perceptual path length

(SPPL) metric, which is computed the following way. First, sample an “infinite” (i.e. very long image). Then, walk over it
frame by frame with a step size of K pixels and compute the perceptual distance between each pair of neighbouring frames.
Finally, report the average distance. If neighbouring frames are close to each other perceptually, then there the content does
not change rapidly across the image, which means that it stitches well. We report this metric for different values of K on

Figure 21: Random samples from Taming Transformer [10] on LHQ, LSUN Tower and LSUN Bridge

Figure 22: Random samples from LocoGAN+SG2+Fourier on LHQ, LSUN Tower and LSUN Bridge

Fig 27.

Figure 23: Random samples from ALIS on LHQ, LSUN Tower and LSUN Bridge

Figure 24: Random samples from ALIS on LHQ. Compare to clustered sampling in Figure 25

Figure 25: Random samples using “clustered sampling” on LHQ. Compare to random samples in Figure 24. To generate
these images, we trained a Gaussian Mixture Model on 20k latent vectors with 8 components. Then, to generate a single long
image, we sampled randomly from only a single mode. In this figure, samples from 4 different modes are presented. This
improves sample quality since connecting too different anchors (like close-by water and far-away mountains) produces poor
performance (see Figure 9). But this also decreases the diversity of samples.

Figure 26: Ablating coordinate embeddings for ALIS on LHQ, LSUN Tower and LSUN Bridge. As being discussed in
Section 5, this leads to blurry generations.

Figure 27: SPPL results on LHQ 2562. For “ground truth”, we computed SPPL using (sufficiently) horizontal images. For
“stacked real images”, we simply concatenated the entire LHQ into a single image.

