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A. Additional Results

In this section, we present additional experiments and
results. For an alternative view of all results, we show Ω
plotted by task in Figure A.

In Tables A/B, we expand our CIFAR-100 results with
two additional methods: (1) LwF.MC [9], a more powerful
variant of LWF designed for class-incremental learning, and
(2) End-to-End Incremental Learning [2] (E2E). In our im-
plementation of E2E, we use the same data augmentations
as our other experiments for a fair comparison. As pre-
viously published [12], we see that E2E performs slightly
worse than BiC and LwF.MC strongly outperforms LWF.
Our approach consistently outperforms LwF.MC.

We also report additional results on the Tiny-ImageNet
dataset [5] in Tables C/D, which contains 200 classes of
64x64 resolution images with 500 training images per class.
We use the same experiment settings as CIFAR-100 with
10 classes per task and 20 tasks total. This is a highly
challenging dataset with a low upper bound performance
(drops from 69.9% to 55.5%), but we arrive at the same
conclusions as we did for our CIFAR-100 experiments: our
method outperforms all data-free class-incremental learning
approaches, and performs slightly worse than state-of-the-
art approaches which store 2000 images for replay. Impor-
tantly, the number of parameters stored for replay in these
experiments (2000*64*64*3 = 2.5e7) far exceeds the num-
ber of parameters temporarily stored for synthesizing im-
ages (8.5e6). Note that this memory usage in our method
can be completely removed at the cost of additional com-
putation. Despite requiring only 10 times fewer parameters
to store (and not storing any training data), our method per-
forms reasonably close to state-of-the-art.

Finally, we expand the main paper results in Table E to
include LWF.MC. Our method and LWF.MC perform sim-
ilarly, indicating that more work is needed to scale our ap-
proach to large 224x224x3 images. This is not surprising
because prior work [7] requires 1 generator per class to
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scale data-free generative distillation up to ImageNet. We
do not have the computational resources to perform this
(e.g., full 1000 class ImageNet would require 1000 genera-
tors). Instead, our work demonstrates the need for genera-
tive data-free knowledge distillation to be efficiently scaled
up to the 224x224x3 images of ImageNet. We leave this
to future work. We kindly acknowledge that recent works
which replay from a generator (close to our setting) also use
small variants of ImageNet in their experiments [1, 3, 8].

B. Additional Baseline Diagnosis with MMD

In Section 5, we analyze representational distance be-
tween embedded features with a metric that captures the dis-
tance between mean embedded images of two distribution
samples. This metric is Mean Image Distance (MID) and
is calculated with a reference sample of images xa and an-
other sample of images xb, where a high score indicates dis-
similar features and a low score indicates similar features.
In this section, we repeat the Section 5 experiments with
the commonly used unbiased Maximum Mean Discrepancy
(MMD) [4], which gives the distance between embeddings
of two distributions in a reproducing kernel Hilbert space.

As done in Section 5, we start by training our model
for the first two tasks in the ten-task CIFAR-100 bench-
mark. We calculate MMD between feature embeddings of
real task 1 data and real task 2 data, and then we calculate
MMD between feature embeddings of real task 1 data and
synthetic task 1 data. The results are reported in Figure B.
For (a) DeepInversion, the MMD score between real task 1
data and synthetic task 1 data is significantly higher than the
MMD score between real task 1 data and real task 2 data.
As found in Section 5, this indicates that the embedding
space prioritizes domain over semantics, which is detrimen-
tal because the classifier will learn the decision boundary
between synthetic task 1 and real task 2, introducing great
classification error with real task 1 images. For (b) our
method, the MMD score between real task 1 data and syn-
thetic task 1 data is much lower, indicating that our feature
embedding prioritizes semantics over domain.



(a) Ω curve for five task CIFAR-100 (without coreset) (b) Ω curve for five task CIFAR-100 (with coreset)

(c) Ω curve for ten task CIFAR-100 (without coreset) (d) Ω curve for ten task CIFAR-100 (with coreset)

(e) Ω curve for twenty task CIFAR-100 (without coreset) (f) Ω curve for twenty task CIFAR-100 (with coreset)

(g) Ω curve for twenty task Tiny ImageNet (without coreset) (h) Ω curve for twenty task Tiny ImageNet (with coreset)

Figure A: Ω curves showing task number t on the x-axis and Ω up to task t on the y-axis.



Table A: Full Results (%) for data-free class-incremental learning on CIFAR-100 for various numbers of tasks (5, 10, 20). Results are
reported as an average of 3 runs.

Tasks 5 10 20
Method Replay Data AN (↑) Ω (↑) AN (↑) Ω (↑) AN (↑) Ω (↑)

Upper Bound None 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0

Base None 16.4± 0.4 48.9± 1.1 8.8± 0.1 32.1± 1.1 4.4± 0.3 19.7± 0.7
LwF [6] None 17.0± 0.1 49.5± 0.1 9.2± 0.0 33.3± 0.9 4.7± 0.1 20.1± 0.3

LwF.MC [9] None 32.5± 1.0 69.8± 1.1 17.1± 0.1 52.0± 1.3 7.7± 0.5 29.3± 0.6
DGR [10] Generator 14.4± 0.4 45.5± 0.9 8.1± 0.1 30.5± 0.6 4.1± 0.3 19.0± 0.3
LwF [6] Synthetic 16.7± 0.1 49.8± 0.1 8.9± 0.0 32.3± 0.0 4.7± 0.0 19.7± 0.0

DeepInversion [13] Synthetic 18.8± 0.3 53.2± 0.9 10.9± 0.6 37.9± 0.8 5.7± 0.3 23.6± 0.7

Ours Synthetic 43.9± 0.9 78.6± 1.1 33.7± 1.2 69.6± 1.6 20.0± 1.4 52.5± 2.5

Table B: Results (%) for class-incremental learning with replay data on CIFAR-100 for various numbers of tasks (5, 10, 20). A coreset of
2000 images is leveraged for replay-based methods, and thus these methods do not meet problem the DFCIL constraints (note we report
for our method numbers without any coreset). Results are reported as an average of 3 runs.

Tasks 5 10 20
Method Replay Data AN (↑) Ω (↑) AN (↑) Ω (↑) AN (↑) Ω (↑)

Upper Bound None 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0

Naive Rehearsal Coreset 34.0± 0.2 73.4± 0.8 24.0± 1.0 64.6± 2.1 14.9± 0.7 51.4± 2.9
LwF [6] Coreset 39.4± 0.3 79.0± 0.0 27.4± 0.8 69.4± 0.4 16.6± 0.4 54.2± 2.2
E2E [2] Coreset 47.4± 0.8 83.1± 1.0 38.4± 1.3 75.0± 1.4 32.7± 1.9 66.8± 3.0
BiC [12] Coreset 53.7± 0.4 87.5± 0.9 45.9± 1.8 81.9± 2.0 37.5± 3.2 71.7± 3.4

Ours Synthetic 43.9± 0.9 78.6± 1.1 33.7± 1.2 69.6± 1.6 20.0± 1.4 52.5± 2.5

Table C: Results (%) for data-free class-incremental learning on
Tiny ImageNet (20 tasks, 5 classes per task). Results are reported
for a single run.

Method Replay Data AN (↑) Ω (↑)
Upper Bound None 55.5 100.0

Base None 4.1 21.9
LwF [6] None 4.4 22.4

LwF.MC [9] None 8.8 37.2
LwF [6] Synthetic 4.0 22.0

DeepInversion [13] Synthetic 5.1 24.8

Ours Synthetic 12.1 49.3

Table D: Results (%) for class-incremental learning with replay
data on Tiny ImageNet (20 tasks, 5 classes per task). A coreset
of 2000 images is leveraged for replay-based methods, and thus
these methods do not meet problem the DFCIL constraints (note
we report for our method numbers without any coreset). Results
are reported for a single run.

Method Replay Data AN (↑) Ω (↑)
Upper Bound None 55.5 100.0

Naive Rehearsal Coreset 6.6 37.7
LwF [6] Coreset 6.9 39.7
E2E [2] Coreset 16.9 56.3
BiC [12] Coreset 17.4 59.8

Ours Synthetic 12.1 49.3

Table E: Results (%) for class-incremental learning on five task
ImageNet-50. A coreset of 2000 images is leveraged for replay-
based methods, and thus these methods do not meet problem the
DFCIL constraints. Results are reported as a single run.

Method Replay Data AN (↑)
Upper Bound None 89.8

LwF [6] None 19.4
LwF.MC [9] None 72.7

Naive Rehearsal Coreset 78.9
LwF [6] Coreset 84.8

Ours Synthetic 71.5

Table F: Range and chosen value of our hyperparameters, chosen
with grid search

Hyperparam. Range Value
αcon 1e-1, 1, 1e1 1
αdiv 1e-1, 1, 1e1 1
αstat 1, 1e1, 5e1, 1e2 5e1
αprior 1e-4, 1e-3, 1e-2, 1e-1, 1 1e-3
αtemp 1, 1e1, 1e2, 1e3, 1e4 1e3
λkd 1e-2, 1e-1, 1 1e-1
λft 1e-2, 1e-1, 1 1e-1



(a) DeepInversion [13] (b) Our Method

Figure B: Maximum Mean Discrepancy (MMD) between feature embeddings of real task 1 data and synthetic task 1 data (blue), real task
2 data (red). Task 1 corresponds to ten classes of CIFAR-100 while task 2 corresponds to a different ten classes of CIFAR-100; the results
are generated after training on task 2.

(a) (b)
Figure C: t-SNE visualizations for (a) Figure 1.a (DeepInversion) and (b) Figure 1.c (Our Method) from the main text.

C. Additional Experiment Details

The majority of experiment details are listed in the main
text (Section 7) and are dataset specific. Additionally: (i)
we augment training data using standard augmentations
such as random horizontal flips and crops, (ii) results were
generated using a combination of Titan X and 2080 Ti
GPUs, and (iii) synthesized images are sampled from F at
each training step.

D. Hyperparameter Sweeps

We tuned hyperparameters using a grid search. The hy-
perparameters were tuned using k-fold cross validation with
three folds of the training data on only half of the tasks. We
do not tune hyperparameters on the full task set because tun-
ing hyperparameters with hold out data from all tasks may
violate the principal of continual learning that states each
task in visited only once [11]. The results reported outside
of this section are on testing splits (defined in the dataset).

E. Discussion of Class Shuffling Seeds
Our results are slightly lower than reported in prior

work [9, 12] because we re-implemented each method in
our benchmarking environment. A major difference be-
tween our implementation and these works is that, instead
of using a fixed seed for a single class-order, we instead
randomly shuffle the class and task order for each experi-
ment run. The class order has a significant effect on the
end results, with our top performing class order resulting in
performance similar to results reported in [12]. We argue
that shuffling the class order gives a better representation of
method performance while acknowledging both approaches
(shuffling and not shuffling) have merit.

F. t-SNE Visualization
In Figure C, we show real t-SNE visualizations which

reasonably approximate Figure 1.a (DeepInversion) and
Figure 1.c (Our Method) from the main text. Results are
shown after training the second task in the ten-task CIFAR-
100 benchmark. Importantly, the distilling θ1,1 model and
the synthetic data are the same for both methods; only the
loss functions are different.



Figure D: Training time for the twenty task Tiny-ImageNet bench-
mark (Tables C/D).

G. Training Time

In Figure D, we show the training time (seconds per
training batch on a single Titain X Pascal GPU) for the
twenty task Tiny-ImageNet benchmark (Tables C/D). Our
method is faster than the SOTA replay-based method, BIC,
yet slower than the other methods. All of these methods
produce a model of the same architecture and therefore have
the same inference time (except for BIC which has a very
small logit weighting operation).
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