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In this supplementary material, we first present the de-
tails of the network architecture (Sec. 1) and then provide
additional analyses and experiments: a proof of Eq. (4) in
the main paper (Sec. 2), more discussion on kernel upsam-
pling (Sec. 3), more validation examples of Eq. (5) in the
main paper (Sec. 4), more examples of inverse kernel sam-
pling using dilated kernels (Sec. 5), blur detection using a
scale attention map (Sec. 6), sensitivity to noise (Sec. 7),
handling irregular blur (Sec. 8), additional results (Sec. 9),
and our model extended to use dual-pixel images (Sec. 10).

1. Detailed Network Architecture

Detailed architectures of overall deblurring network and
KPAC block can be found in Tables 1 and 2, respectively.

2. Proof of ( 1
s2
k↑s)

† = 1
s2
(k†

↑s)

In this section, we present a formal discussion on Eq. (4)
in the main paper. For a 2D image l of size w × h, the spa-
tial upsampling can be performed by zero padding to the
discrete Fourier transform of l [6, 2]. Let ↑s denote the up-
sampling operation by a scaling factor s, and let l↑s be the
upsampled result of image l by the scaling factor s. Then,
the discrete Fourier transform L↑s of l↑s is defined in the
range − sw

2 ≤ u < sw
2 ,− sh

2 ≤ v < sh
2 , and can be ob-

tained as:

L(u, v)↑s =

{
L(u, v) −w

2 ≤ u < w
2 ,−

h
2 ≤ v < h

2

0 otherwise,
(1)

where L(u, v) is the discrete Fourier transform of l, and u
and v are pixel indices in the frequency domain. L(0, 0)
corresponds to the DC component of L. This zero padding-
based upsampling is mathematically equivalent to convolu-
tion with a sinc kernel [2].

In the remaining of this section, for notational simplic-
ity, we use ↑ s to indicate the zero-padding operation for

layer type(#) size stride out act.
Encoder (3-level)

Conv1 1 5× 5 (1, 1) 48 lrelu
Conv1 2 3× 3 (1, 1) 48 lrelu
Conv2 1 3× 3 (2, 2) 48 lrelu
Conv2 2 3× 3 (1, 1) 48 lrelu
Conv3 1 3× 3 (2, 2) 96 lrelu
Conv3 2 3× 3 (1, 1) 96 lrelu
Conv4 1 3× 3 (2, 2) 96 lrelu
Conv4 2 3× 3 (1, 1) 96 lrelu

KPAC blocks
KPAC1 5× 5 (1, 1) 96 lrelu
KPAC2 5× 5 (1, 1) 96 lrelu
concat Conv4 2, KPAC1, KPAC2

Decoder (3-level)
Conv5 1 3× 3 (1, 1) 96 lrelu
Conv5 2 3× 3 (1, 1) 96 lrelu
Deconv1 4× 4 (2, 2) 96 lrelu
cocnat Deconv1, Conv3 2
Conv6 3× 3 (1, 1) 96 lrelu

Deconv2 4× 4 (2, 2) 48 lrelu
cocnat Deconv2, Conv2 2
Conv7 3× 3 (1, 1) 48 lrelu

Deconv3 4× 4 (2, 2) 48 lrelu
cocnat Deconv3, Conv1 2
Conv8 5× 5 (1, 1) 3 lrelu

add Conv8, Input -
Table 1. Architecture of our deblurring network.

upsampling in the frequency domain as well as the upsam-
pling operation in the spatial domain. We also omit the pixel
coordinates (u, v), e.g., representing L(u, v)↑s as L↑s.

We use the Wiener deconvolution [7] to compute the in-
verse kernel k† of a blur kernel k, i.e.,
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k† = F−1

(
F (k)

|F (k)|2 + ϵ

)
, (2)

where F (k) is the discrete Fourier transform of k, and F (k)
is the complex conjugate of F (k). The division operation
is done in an element-wise manner. ϵ is a noise parameter.
Note that when ϵ = 0, this inverse kernel is equivalent to
the direct inverse kernel F−1(1/F (k)).

We first prove the equality relation:

(k↑s)
† = k†↑s. (3)

Regarding the left side of Eq. (3), the upsampling of a blur
kernel k can be obtained using the zero padding-based up-
sampling as:

k↑s = F−1(F (k)↑s). (4)

Then, in the frequency domain, from Eq. (1), we have

F (k↑s) = F (k)↑s =

{
F (k) −w

2 ≤ u < w
2 ,−

h
2 ≤ v < h

2

0 otherwise.
(5)

From Eq. (2), the inverse kernel (k↑s)† for the upsampled
kernel k↑s can be derived by

(k↑s)
† = F−1

(
F (k↑s)

|F (k↑s)|2 + ϵ

)
. (6)

In the frequency domain, from Eq. (5), we have

F ((k↑s)
†) =

F (k↑s)

|F (k↑s)|2 + ϵ

=

{
F (k)

|F (k)|2+ϵ −w
2 ≤ u < w

2 ,−
h
2 ≤ v < h

2

0 otherwise.

(7)

Note that the zero padded area in F (k↑s) remains zero in
F ((k↑s)

†).
Regarding the right side of Eq. (3), from Eqs. (4) and

(2), the upsampled inverse kernel k†↑s for kernel k can be
derived as

k†↑s = F−1(F (k†)↑s)

= F−1

(F (F−1

(
F (k)

|F (k)|2 + ϵ

)))
↑s


= F−1

( F (k)

|F (k)|2 + ϵ

)
↑s

 .

(8)

Then, in the frequency domain, from Eq. (1), we have

layer type(#) size dilation out act.
Scale attention module

AC 5× 5 (2, 2) 32 lrelu
AC 5× 5 (2, 2) 32 lrelu
AC 5× 5 (2, 2) 16 lrelu
AC 5× 5 (2, 2) 16 lrelu

Conv {α1, ..., α5} 5× 5 (1, 1) 5 sigmoid
Shape attention module

global average pooling 96 -
fully connected layer 16 lrelu

fully connected layer (β) 48 sigmoid
Multiple atrous convolutions

AC1 5× 5 (1, 1) 48 lrelu
AC2 5× 5 (2, 2) 48 lrelu
AC3 5× 5 (3, 3) 48 lrelu
AC4 5× 5 (4, 4) 48 lrelu
AC5 5× 5 (5, 5) 48 lrelu

Fusion
cocnat α1 × β ×AC1, ..., α5 × β ×AC5
Conv 3× 3 (1, 1) 96 lrelu

Table 2. Architecture of our KPAC block. AC denotes an atrous
convolution layer.

𝑘: Original Gaussian kernel with 𝜎 = 2.0

𝑘′: Upscaled kernel with increased 𝜎 = 6.0

1

9
𝑘↑3: Upsampled kernel with a sinc filter

Figure 1. 1D plot of 3× upscaling of a 2D Gaussian kernel. Up-
sampling ( 1

9
k↑3) the original Gaussian kernel (k) is the same as

upscaling (k′) the kernel by increasing the standard deviation (σ).

F (k†↑s) =

(
F (k)

|F (k)|2 + ϵ

)
↑s

=

{
F (k)

|F (k)|2+ϵ −w
2 ≤ u < w

2 ,−
h
2 ≤ v < h

2

0 otherwise.

(9)

As Eqs. (7) and (9) are equivalent to each other, their spa-
tial domain counterparts (k↑s)† and k†↑s are equivalent too.
This proves Eq. (3).

Eq. (4) in the main paper has a scaling factor in both left
and right sides. The upsampling operation in the left side of
Eq. (3) scales up the total intensity of kernel k by s2 times.
Similarly, the upsampling operation in the right side of Eq.
(3) also scales up the total intensity of inverse kernel k†

by s2 times. Thus, to obtain a properly normalized inverse
kernel in the left and right sides, we apply a scaling factor
1
s2 to k↑s in the left side, and to k†↑s in the right side. Then,
we obtain Eq. (4) in the main paper.
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(a) blurred by (b) deblurred by (c) deblurred by (d) blended using (e) blended using (f) deblurred by
1
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Figure 2. Deconvolution results using Eq. (5) in the main paper and its modified version using dilated inverse kernels. In the examples, s1
and s2 are the sampled scale factors and st is the target scale factor, where s1 < st < s2. From top to bottom, we used (3.0, 3.4, 4.0), (3.0,
3.5, 4.0), (3.0, 3.6, 4.0), (2.0, 2.6, 3.0), and (1.0, 1.7, 2.0) for the scale factors (s1, st, s2). We found the blending weights for producing (d)
and (e) using non-negative least squares to fit the result of the target scale factor st in (f) using those of the sampled scale factors s1 and
s2 in (b) and (c). Approximation accuracies1of (d) from top to bottom are 98.68%, 97.84%, 98.96%, 95.37%, and 97.03%, respectively.
Approximation accuracies of (e) from top to bottom are 98.55%, 97.87%, 99.10%, 96.12%, and 97.64%, respectively.

3. Discussion on Kernel Upsampling

We consider general upsampling operation in Eq. 4 in the
main paper for the commutative property between upsam-
pling and inversion of a kernel. For validating the property,
in Sec. 2 of this supplementary material, we used a specific
upsampling method using the sinc filter to change the spa-

1The accuracy is computed by 1−MAE(1, x̂/xs), where MAE is
the mean absolute error, / is pixel-wise division, xs is the deconvolution
result using an inverse kernel of a target scale (e.g., Fig. 2f), and x̂ is the
approximated deconvolution result computed using Eq. (5) (e.g., Fig. 2d).

tial scale of a kernel. Then, there could be a concern whether
upsampling of a blur kernel can model actual scale changes
of the blur kernel. In our observation, for Gaussian blur ker-
nels with different standard deviations, which is an often-
used assumption in existing defocus deblurring approaches,
upsampling a kernel is the same as changing the standard
deviation of the kernel (Fig. 1).

Nonetheless, the upsampling method may cause a gap
in accurately modeling the scale changes of real-world blur
when the blur kernel is arbitrary, other than Gaussian. This
potential modeling gap in upsampling would be handled by
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(a) blurred by 1
s2
k↑s (b) ground-truth (c) 1

s2
(k†

↑s) (d) deblurred by (c) (e) k†
↑/s (f) deblurred by (e)

Figure 3. Visual examples showing that 1
s2
(k†

↑s) and k†
↑/s produce similar results. From top to bottom, we used 3, 4, 5, 3, 4, and 5 for

the scale factor s. All PSNR values between (d) and (f) are over 40dB.

shape and scale attentions in our KPAC blocks together with
other convolution layers in our network.

4. Inverse Kernel-based Deconvolution for
Spatially Varying Defocus Blur

In Eq. (5) in the main paper, we approximate spatially
varying image deconvolution by combining the results ob-
tained from inverse kernels with a discrete set of sizes. In

this section, we present additional visual examples to show
the validity of our approximated deconvolution. Figs. 2b
and 2c are the deblurred results obtained by convolving in-
verse kernels of different sizes. While neither kernel fits the
actual blur size, a linear combination of the deconvolution
results still produces a visually pleasing result (Fig. 2d), al-
most equivalent to the deconvolution result (Fig. 2f) using
the inverse kernel of the target scale.
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(a) input (b) EBDB [4] (c) our attention map (d) ground-truth
Figure 4. Blur detection using our scale attention map. The attention map used for blur detection is for the atrous convolution layer with a
dilation rate 1 in the first KPAC block of our model.

5. Inverse Kernel Sampling for Atrous Convo-
lution

In Sec. 4.1 of the main paper, we claimed that for a
blurred region, which is spatially smooth, filtering opera-
tions using sparsely sampled pixels (with a dilated kernel)
and using densely sampled pixels (with a rescaled kernel)
produce similar results. Fig. 3 presents additional visual ex-
amples to show that a dense sampling of an inverse kernel
can be replaced by its sparse sampling in terms of deblur-
ring performance.

Moreover, we also claimed that a modified version of
Eq. (5) in the main paper using the dilated inverse kernels
produces results almost equivalent to those from the original
Eq. (5). In Fig. 2, we present additional examples to show
the validity of the claim, where the modified and original
versions of Eq. (5) produce almost same results in Figs. 2e
and 2d, respectively.

6. Blur Detection Using a Scale Attention Map
In Sec. 5.1 of the main paper, we showed that the scale

attention map for the atrous convolution layer with a di-
lation rate of 1 in the first KPAC block of our deblurring
network captures blur of almost any size. In this section,
we evaluate the blur detection performance of the scale at-
tention map using the CUHK dataset [5]. We use 200 test
images in the CUHK dataset and measure F-measure and
accuracy. Since our attention is computed in the low reso-
lution feature space, small blurs that can be removed in the
encoder network would be ignored. Therefore, we upsample
input images four times for obtaining attention maps in this
test. The result shows that our attention map (F-measure:
0.832 and accuracy: 78.4%) can detect blur comparably to
the recent defocus map estimation method [4] (F-measure:
0.839 and accuracy: 76.5%). Fig. 4 shows qualitative exam-
ples.

Noise level (σ) of testset
1% 3% 5%

w/o noise augmentation 25.13 24.76 24.23
w/ noise augmentation 25.06 25.01 24.85

Table 3. Performance (PSNR) under different noise conditions.

7. Sensitivity to Noise

We investigate the sensitivity of our model to different
noise levels, as the shape of a desirable inverse kernel can
be affected by noise. Table 3 quantitatively shows the ef-
fect of the noise level on our model. For the experiment, we
prepare two models. One model is trained with the origi-
nal dataset of [1] (top row of the table). The other model
is trained with defocused images augmented with additive
Gaussian noise controlled by σ within a range [0%, 3%]
(bottom row of the table). Compared to the model trained
without the noise augmentation, the model trained with the
noise augmentation is more robust to noise, and shows more
consistent PSNRs around 25 dB.

8. Handling Irregular Blur

Due to the network design based on kernel weight shar-
ing, our method would be more effective for the case where
the majority of blur variation happens in the size. In prac-
tice, blur shape can spatially vary as well, e.g., due to lens
distortion in a smartphone camera. Still, we observed that
our network moderately works on defocused images cap-
tured by smartphones in an unseen dataset [3], which usu-
ally contain small-sized blurs (Fig. 5). However, as we dis-
cussed as limitations in Sec. 6 of the main paper, our net-
work may not properly handle blur with severely irregular
shapes or strong highlights (Fig. 6), which are rarely in-
cluded in the training set [1].
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(a) Defocused image captured by a smartphone 

(b) Our result

Figure 5. Deblurring on the smartphone dataset [3]. Our network
properly removes the blur both in center (yellow box) and periph-
eral (blue box) regions of an image.

(a) Input (b) Our result

(c) Input (d) Our result

Figure 6. Failure cases on the CUHK dataset [5]. Our network
fails for irregular blurs such as bokeh with sharp boundaries (a)
and swirly bokeh (c), not contained in the training dataset [1].

9. Additional Results
We present additional qualitative results on the DPDD

dataset [1] (Figs. 7 and 8) and the CUHK blur detection
dataset [5] (Figs. 9 and 10).

10. Our Model Using Dual-Pixel Images
While our model with a single image input shows state-

of-the-art performance, the deblurring performance can fur-
ther boosted by using dual-pixel images as the input. For
the experiment, we retrained our model by replacing a sin-
gle image input as dual-pixel image input with the same
training strategy in Sec. 5 of the main paper. Specifically,
we concatenate the two images of a dual-pixel image in the
channel dimension and use it as the input of the network.

Model PSNR↑ SSIM↑ LPIPS↓ Parameters (M)

DPDNet (single) [1] 24.42 0.827 0.277 32.25
DPDNet (dual) [1] 25.12 0.850 0.223 32.25

Ours (single) 25.24 0.842 0.225 2.06
Ours (dual) 25.86 0.859 0.185 2.06

Table 4. Quantitative performance of our dual-pixel-based model.

Table 4 shows that dual-pixel input further improves the
performance of our model, and our model with dual-pixel
input outperforms DPDNet [1] with dual-pixel input by a
large margin. Fig. 11 shows that dual-pixel input enables
our model to handle fine details better.
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(a) input (b) DPDNet (single) [1] (c) DPDNet (dual) [1] (d) ours (e) GT

Figure 7. Additional qualitative comparisons with DPDNet [1] on the test set of the DPDD dataset [1].
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(a) input (b) DPDNet (single) [1] (c) DPDNet (dual) [1] (d) ours (e) GT

Figure 8. Additional qualitative comparisons with DPDNet [1] on the test set of the DPDD dataset [1].
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(a) input (b) DPDNet [1] (c) ours

Figure 9. Additional qualitative comparisons with DPDNet [1] on the defocused images in the CUHK blur detection dataset [5].
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(a) input (b) DPDNet [1] (c) ours

Figure 10. Additional qualitative comparisons with DPDNet [1] on the defocused images in the CUHK blur detection dataset [5].
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(a) input (b) DPDNet (dual) [1] (c) ours (dual) (d) GT

Figure 11. Qualitative comparisons of defocus deblurring models using dual-pixel input on the test set of the DPDD dataset [1].
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