
A. Proof of Theorem 1
Its Lagrangian function can be written as

L(d, v, ξ,η,α,β,µ,λ) = v + C1 ·
∑
j∈Ia

ξj + C2 ·
∑
i∈Ip

∑
j∈Ia

ηij +
1

2
∥d∥2 +

∑
i∈Ip

αi(⟨∇θℓm(θ(τ)),d⟩ − v)

+
∑
j∈Ia

αj(⟨∇θℓj(θ
(τ)),d⟩−v−ξj)+

∑
i∈Ip

∑
j∈Ia

βij(⟨∇θℓi(θ
(τ)),d⟩−⟨∇θℓj(θ

(τ)),d⟩−ηij)−
∑
i∈Ia

µiξi−
∑
i∈Ip

∑
j∈Ia

λijηij ,

(18)

where αm and βm are Lagrange multipliers. Then we have

∂L
∂d

= d+

M∑
m=1

αm∇θℓm(θ(τ)) +
∑
i∈Ip

∑
j∈Ia

βij(∇θℓi(θ
(τ))−∇θℓj(θ

(τ))) = 0,

→ d =−
M∑

m=1

αm∇θℓm(θ(τ))−
∑
i∈Ip

∑
j∈Ia

βij(∇θℓi(θ
(τ))−∇θℓj(θ

(τ))),

∂L
∂v

= 1−
M∑

m=1

αm = 0, →
M∑

m=1

αm = 1,

∂L
∂ξj

= C1 − αj − µj = 0, → αj + µj = C1, ∀j ∈ Ia

∂L
∂ηij

= C2 − βij − λij = 0, → βij + λij = C2,∀i ∈ Ip,∀j ∈ Ia.

(19)

From the Karush–Kuhn–Tucker (KKT) conditions, we have

d∗ +

M∑
m=1

αm∇θℓm(θ(τ)) +
∑
i∈Ip

∑
j∈Ia

βij(∇θℓi(θ
(τ))−∇θℓj(θ

(τ))) = 0, (20)

and for each i ∈ Ip, j ∈ Ia m ∈ Ip, Ia, we have

⟨∇θℓi(θ
(τ)),d∗⟩ ≤ v∗, ⟨∇θℓj(θ

(τ)),d∗⟩ ≤ v∗ + ξ∗j ,

⟨∇θℓi(θ
(τ)),d∗⟩ ≤ ⟨∇θℓj(θ

(τ)),d∗⟩+ η∗ij ,

αm ≥ 0, ξ∗j ≥ 0, η∗ij ≥ 0, βij ≥ 0, µj ≥ 0, λij ≥ 0,

αi(⟨∇θℓi(θ
(τ)),d∗⟩ − v∗) = 0, αj(⟨∇θℓj(θ

(τ)),d∗⟩ − v∗ − ξ∗j ) = 0,

βij(⟨∇θℓi(θ
(τ)),d∗⟩ − ⟨∇θℓj(θ

(τ)),d∗⟩ − η∗ij) = 0, µjξ
∗
j = 0, λijη

∗
ij = 0,

(21)

1. if d∗ = 0, then ⟨∇θℓm(θ(τ)),d∗⟩ = 0, ∀m, and immediately satisfies the conclusion.

2. if d∗ ̸= 0, then we have
v∗ = −∥d∥2 −

∑
j∈Ia

αjξ
∗
j −

∑
i∈Ip

∑
j∈Ia

βijη
∗
ij .

Thus

∀i ∈ Ip, ⟨∇θℓi(θ
(τ)),d∗⟩ ≤ v∗ = −∥d∥2 − C1

∑
j∈Ia

ξ∗j − C2

∑
i∈Ip

∑
j∈Ia

η∗ij

∀j ∈ Ia, ⟨∇θℓj(θ
(τ)),d∗⟩ ≤ v∗ + ξ∗j = −∥d∥2 − C1

∑
j∈Ia

ξ∗j − C2

∑
i∈Ip

∑
j∈Ia

η∗ij + ξ∗j ,
(22)

which means that for the main tasks and the auxiliary task satisfying −∥d∥2 −C1

∑
j∈Ia

ξ∗j −C2

∑
i∈Ip

∑
j∈Ia

η∗ij +
ξ∗j ≤ 0, their loss function values will decrease.



B. Details of Hybrid Solver for Eq. (14)

Denote all the integer from a to b with [a..b]. The dual problem to solve is

min
x

xTQx ,x ∈ RMt+Mp+Mt∗Mp

s.t. xi ≥ 0, i ∈ [1..Mt +Mp], xi ≤ C1, i ∈ [Mt..Mt +Mp],
∑

i∈[1..Mt]

xi = 1,

0 ≤ xj ≤ C2, j ∈ [Mt +Mp + 1..Mt +Mp +Mt ∗Mp],∑
i∈Πj

xi ≤ xj , j ∈ [Mt + 1..Mt +Mp], Πj = {Mt +Mp +Mp ∗ k + j}, k ∈ [1..Mt],

(23)

with Q as
(

[∆t,∆p]
T [∆t,∆p] [∆t,∆p]

T (∆tA−∆pP
T )

(∆tA−∆pP
T )T [∆t,∆p] (∆tA−∆pP

T )T (∆tA−∆pP
T )

)
. When updating xi, i ∈ [1..Mt + Mp], we

choose a working set B with size |B| = 2, and solve the following subproblem.

min
xi,xj

Qiix
2
i +Qjjx

2
j + 2Qijxixj + 2

∑
k

(Qikxi +Qjkxj)xk, k ∈ [1..Mt +Mp +Mt ∗Mp], k ̸= i, j,

s.t. xi + xj = 1−
∑
k

xk, k ∈ [1..Mt +Mp], k ̸= i, j,∑
l∈Πi

xl ≤ xi ≤ C1,∀i ∈ [Mt + 1..Mt +Mp], 0 ≤ xi ≤ C1,∀i ∈ [1..Mt].

(24)

Assume Qii and Qjj are nonzero, then this problem is reduced to a single-variable quadratic optimization with bound
constraint. As established previously, appropriately choosing the working set B at each iteration can speed up the convergence
of the overall optimization. One of the heuristics is to find the most violating pair according to the KKT condition. And the
KKT condition for xi, i ∈ [1..Mt +Mp] is

(Qx)i + µi − νi + λ = 0,
∑
i

xi = 1, i ∈ [1..Mt +Mp],

L ≤ xi ≤ C1, µi ≥ 0, νi ≥ 0, µi(xi − C1) = 0, νi(xi − L) = 0,

(25)

where L is the new lower bound of xi, either 0 or
∑

l∈Πi
xl. For i ∈ Ilow = {i|xi > L}, we have λ ≤ −(Qx)i, whereas

for i ∈ Iup = {i|xi < C1}, we have λ ≥ −(Qx)i. Therefore, max{−(Qx)i, i ∈ Iup}} ≤ min{−(Qx)i, i ∈ Ilow}}.
According to this requirement, an index pair (i, j) is called a maximal violating pair if

i = argmaxt{−(Qx)t|t ∈ Ilow}, j = argmint{−(Qx)t|t ∈ Iup.} (26)

For i ∈ [Mt+Mp+1..Mt+Mp+Mt ∗Mp], we consider a random selection of a single variable to descent each time. And
the subproblem is thus

min
xi

Qiix
2
i + 2

∑
k∈I1,k ̸=i

Qikxixk, s.t. 0 ≤ xi ≤ min(C2, xk −
∑
l∈Ωi

xl) (27)

The algorithm for “HybridSolver” is shown as Algorithm 2.



Algorithm 2: HybridSolver

Let x be a feasible point and calculate q, outer step = 0;
while x is not optimal do

Calculate the full gradient∇xf(x);
if outer step is even then

Update xi, xj , i ∈ I1; ▷ CD with linear constraints
Determine the working set by (26) ;
for s← 1 to r do

(i, j)← (is, js);
Calculate (Qx)i and (Qx)j ;
if (i, j) is not violating pair then
else

Solve the subproblem (24)
end

end
else

Update xi, i ∈ I2; ▷ CD without a linear constraint
Random permute {1, . . . , l} to {π(1), . . . , π(l)};
for s← 1 to l do

i← π(s);
Solve the subproblem (27) ;

end
end
outer step = outer step + 1;

end

C. Detailed Results on CelebA and CIFAR-100 Datasets in Figure 5

Table 3: CelebA dataset multi-label classification error per attribute for all algorithms.

Single
Task

tMOO-
MTL

LinSca-
lar

Uncer-
tainty

MOO-
MTL

Ours

Attr. 0 7.16 6.95 7.11 7.18 6.17 5.99
Attr. 1 14.38 17.78 17.30 16.77 14.87 14.5
Attr. 2 19.25 20.49 20.99 20.56 18.35 18.41
Attr. 3 16.79 17.3 17.82 18.45 16.06 15.54
Attr. 4 1.20 1.32 1.25 1.17 1.08 1.21
Attr. 5 4.75 4.74 4.91 4.95 4.13 4.08
Attr. 6 14.24 14.39 20.97 15.17 14.08 14.75
Attr. 7 17.74 18.03 18.53 18.84 17.25 17.21
Attr. 8 8.87 10.21 10.22 10.19 8.42 8.29
Attr. 9 5.09 5.27 5.29 5.44 4.60 4.57
Attr. 10 4.02 5.92 4.14 4.33 3.60 3.45
Attr. 11 15.34 15.52 16.22 16.64 14.56 14.69
Attr. 12 7.68 14.25 8.42 8.85 7.41 7.12
Attr. 13 5.15 6.12 5.17 5.26 4.52 4.56
Attr. 14 4.13 4.91 4.14 4.17 3.54 3.37
Attr. 15 0.52 6.96 0.81 0.62 0.56 0.48
Attr. 16 3.94 3.91 4.00 3.99 3.46 3.62
Attr. 17 2.66 4.87 2.39 2.35 2.16 2.14
Attr. 18 9.01 11.4 8.79 8.84 7.83 7.75
Attr. 19 12.27 24.64 13.78 13.86 11.29 11.79

Single
Task

tMOO-
MTL

LinSca-
lar

Uncer-
tainty

MOO-
MTL

Ours

Attr. 20 1.61 / 1.61 1.58 1.43 1.18
Attr. 21 6.20 / 7.18 7.73 6.26 6.06
Attr. 22 4.14 / 4.38 4.08 3.81 4.13
Attr. 23 6.57 / 8.32 8.80 6.47 6.63
Attr. 24 5.38 / 5.01 5.12 4.23 4.16
Attr. 25 24.82 / 27.59 26.94 23.87 23.73
Attr. 26 3.40 / 3.54 3.78 3.16 3.2
Attr. 27 22.74 / 26.74 26.21 22.45 21.94
Attr. 28 5.82 / 6.14 6.17 5.16 5.05
Attr. 29 5.18 / 5.55 5.40 4.87 4.95
Attr. 30 3.79 / 3.29 3.24 3.03 2.97
Attr. 31 7.18 / 8.05 8.40 6.92 6.64
Attr. 32 17.25 / 18.21 18.15 15.93 15.38
Attr. 33 15.55 / 16.53 16.19 13.80 13.76
Attr. 34 9.76 / 11.12 11.46 9.73 9.29
Attr. 35 1.13 / 1.15 1.08 1.08 1.03
Attr. 36 7.56 / 7.91 8.06 7.18 7.34
Attr. 37 11.90 / 13.27 13.47 11.19 11.01
Attr. 38 3.29 / 3.80 4.04 3.51 3.33
Attr. 39 13.40 / 13.25 13.78 11.95 11.82



Table 4: CIFAR-100 dataset 5-way multi-label classification error per attribute for all algorithms.

tMOO-MTL LinScalar Uncertainty MOO-MTL Ours
Task 0 24.00 21.29 26.87 26.83 21.60
Task 1 20.40 20.07 21.26 21.01 17.40
Task 2 19.00 23.05 22.65 25.96 18.40
Task 3 21.80 25.33 25.06 25.33 23.20
Task 4 15.80 13.65 12.86 13.39 15.00
Task 5 23.00 24.09 26.53 25.96 17.40
Task 6 13.20 18.30 22.16 19.76 13.20
Task 7 25.20 27.04 20.99 23.71 21.40
Task 8 15.40 24.09 24.03 22.64 13.20
Task 9 6.80 16.91 14.44 14.95 5.80
Task 10 - 15.46 15.05 12.36 12.80
Task 11 - 21.04 24.38 18.56 22.20
Task 12 - 16.93 12.21 12.21 19.20
Task 13 - 22.85 22.85 23.81 23.40
Task 14 - 19.64 20.42 17.55 46.80
Task 15 - 20.92 24.40 24.48 27.60
Task 16 - 20.24 19.56 16.57 19.40
Task 17 - 23.35 22.55 23.45 24.80
Task 18 - 15.42 16.93 13.01 7.80
Task 19 - 18.65 16.93 17.71 10.80


