A. Proof of Theorem 1

Its Lagrangian function can be written as
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where o, and 3,,, are Lagrange multipliers. Then we have
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From the Karush—Kuhn-Tucker (KKT) conditions, we have
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and foreach: € Z,,,j € Z, m € I,,,Z,, we have
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which means that for the main tasks and the auxiliary task satisfying —||d||?> — C; dier, § —Codlier, D jer, i

§; < 0, their loss function values will decrease.



B. Details of Hybrid Solver for Eq. (14)

Denote all the integer from a to b with [a..b]. The dual problem to solve is
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choose a working set B with size | B| = 2, and solve the following subproblem.

). When updating z;,7 € [1..M; + M,], we
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Assume @Q;; and (Q;; are nonzero, then this problem is reduced to a single-variable quadratic optimization with bound
constraint. As established previously, appropriately choosing the working set B at each iteration can speed up the convergence
of the overall optimization. One of the heuristics is to find the most violating pair according to the KKT condition. And the
KKT condition for z;,i € [1..M; 4+ M) is

(Q.’B)z +ui — v+ A= 0, ZIL‘Z =1,1 € [1Mt + Mp],
i (25)
L<xz; <Cyp, i 20, v; 20, pi(x; —Cr) =0, vi(x; — L) =0,

where L is the new lower bound of x;, either 0 or Zlem x;. Fori € Ty, = {i|x; > L}, we have A < —(Qx);, whereas
fori € Z,,, = {i|lz; < C1}, we have A > —(Q=z);. Therefore, max{—(Qx);,i € Zyp}} < min{—(Qx);,i € Liow}}-
According to this requirement, an index pair (i, ) is called a maximal violating pair if

i = argmax, {—(Qx)¢|t € Liow}, j = argmin,{—(Qx).|t € L.} (26)

For i € [M;+ M, +1..M; + M, + M, = M|, we consider a random selection of a single variable to descent each time. And
the subproblem is thus
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The algorithm for “HybridSolver” is shown as Algorithm 2.



Algorithm 2: HybridSolver

Let « be a feasible point and calculate g, outer_step =0;
while x is not optimal do
Calculate the full gradient V f (x);
if outer_stepis even then
Update x;,x;,1 € Iy; > CD with linear constraints
Determine the working set by (26) ;
for s <~ 1tordo
(4,7) < (is,Js)s
Calculate (Qx); and (Qx);;
if (¢, 7) is not violating pair then
else
| Solve the subproblem (24)
end

end
else
Update x;, ¢ € Zo; > CD without a linear constraint
Random permute {1, ...} to {w(1),...,7(D)};
for s+ 1toldo
i<+ m(s);
Solve the subproblem (27) ;
end

end
outer_step =outer_step+1;

end

C. Detailed Results on CelebA and CIFAR-100 Datasets in Figure 5

Table 3: CelebA dataset multi-label classification error per attribute for all algorithms.

Single  tMOO- LinSca- Uncer- MOO-  Ours Single | tMOO- | LinSca-| Uncer- | MOO- | Ours
Task MTL lar tainty MTL Task MTL lar tainty MTL

Attr. 0 7.16 6.95 7.11 7.18 6.17 5.99 Attr. 20 | 1.61 1.61 1.58 1.43 1.18
Attr. 1 14.38 17.78 17.30 16.77 14.87 14.5 Attr. 21 | 6.20 7.18 7.73 6.26 6.06
Attr. 2 19.25 20.49 20.99 20.56 18.35 18.41 Attr. 22 | 4.14 4.38 4.08 3.81 4.13
Attr. 3 16.79 17.3 17.82 18.45 16.06 15.54 Attr. 23 | 6.57 8.32 8.80 6.47 6.63
Attr. 4 1.20 1.32 1.25 1.17 1.08 1.21 Attr. 24 | 5.38 5.01 5.12 4.23 4.16

Attr. 5 4.75 4.74 491 4.95 4.13 4.08 Attr. 25 | 24.82 27.59 26.94 23.87 23.73
Attr. 6 14.24 14.39 20.97 15.17 14.08 14.75 Attr. 26 | 3.40 3.54 3.78 3.16 32
Attr. 7 17.74 18.03 18.53 18.84 17.25 17.21 Attr. 27 | 22.74 26.74 26.21 22.45 21.94
Attr. 8 8.87 10.21 10.22 10.19 8.42 8.29 Attr. 28 | 5.82 6.14 6.17 5.16 5.05
Attr. 9 5.09 5.27 5.29 5.44 4.60 4.57 Attr. 29 | 5.18 5.55 5.40 4.87 4.95

Attr. 10 4.02 5.92 4.14 433 3.60 3.45 Attr. 30 | 3.79 3.29 3.24 3.03 297
Attr. 11 15.34 15.52 16.22 16.64 14.56 14.69 Attr. 31 | 7.18 8.05 8.40 6.92 6.64
Attr. 12 7.68 14.25 8.42 8.85 7.41 7.12 Attr. 32 | 17.25 18.21 18.15 15.93 15.38
Attr. 13 5.15 6.12 5.17 5.26 4.52 4.56 Attr. 33 | 15.55 16.53 16.19 13.80 13.76
Attr. 14 4.13 4.91 4.14 4.17 3.54 3.37 Attr. 34 | 9.76 11.12 11.46 9.73 9.29

Attr. 15 0.52 6.96 0.81 0.62 0.56 0.48 Attr. 35 | 1.13 1.15 1.08 1.08 1.03
Attr. 16 3.94 391 4.00 3.99 3.46 3.62 Attr. 36 | 7.56 791 8.06 7.18 7.34
Attr. 17 2.66 4.87 2.39 2.35 2.16 2.14 Attr. 37 | 11.90 13.27 13.47 11.19 11.01
Attr. 18 9.01 11.4 8.79 8.84 7.83 7.75 Attr. 38 | 3.29 3.80 4.04 3.51 3.33
Attr. 19 12.27 24.64 13.78 13.86 11.29 11.79 Attr. 39 | 13.40 13.25 13.78 11.95 11.82
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Table 4: CIFAR-100 dataset 5S-way multi-label classification error per attribute for all algorithms.

tMOO-MTL  LinScalar  Uncertainty MOO-MTL  Ours

Task 0 24.00 21.29 26.87 26.83 21.60
Task 1 20.40 20.07 21.26 21.01 17.40
Task 2 19.00 23.05 22.65 25.96 18.40
Task 3 21.80 25.33 25.06 25.33 23.20
Task 4 15.80 13.65 12.86 13.39 15.00
Task 5 23.00 24.09 26.53 25.96 17.40
Task 6 13.20 18.30 22.16 19.76 13.20
Task 7 25.20 27.04 20.99 23.71 21.40
Task 8 15.40 24.09 24.03 22.64 13.20
Task 9 6.80 16.91 14.44 14.95 5.80
Task 10 - 15.46 15.05 12.36 12.80
Task 11 - 21.04 24.38 18.56 22.20
Task 12 - 16.93 12.21 12.21 19.20
Task 13 - 22.85 22.85 23.81 23.40
Task 14 - 19.64 20.42 17.55 46.80
Task 15 - 20.92 24.40 24.48 27.60
Task 16 - 20.24 19.56 16.57 19.40
Task 17 - 23.35 22.55 23.45 24.80
Task 18 - 15.42 16.93 13.01 7.80

Task 19 - 18.65 16.93 17.71 10.80




