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Supplementary

1. Counting Evaluation Metrics
Similar to previous works in crowding counting, we

adopt Mean Absolute Error (MAE) and Mean squared er-
ror (MSE) as our evaluation metrics which are defined as:

MAE =
1

N

N∑
i

|ẑi − zi| , (1)

MSE =

√√√√ 1

N

N∑
i

(ẑi − zi)2, (2)

where ẑi and zi represent estimated crowd number and
ground-truth crowd number of the i-th image, respectively.
N denotes the total number of test images.

2. Discussion on Spatial Scale Problem
Despite its superior performance, the proposed P2PNet

did not explicitly deal with the scale variation problem. Ac-
tually, different from bounding boxes, the head points them-
selves are scale ignorant in nature. In other words, the
one-one matching ensures that no matter which scale the
head is, only one optimal predicted proposal will be cho-
sen as its prediction. Thus, some implicit scale cues might
be learned automatically during the training process. Be-
sides, the proposed framework is orthogonal to some pre-
vious works dealing with scale variations, such as FPN [8],
PGCNet [15], CSRNet [7], MCNN [16], etc.

3. Hyperparameters Analysis
We set the number of reference points (K) based on

the nearest neighbour distance distribution of ground truth
points. Specifically, based on the observation that nearly
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95% (SHTech PartA) of the head points are within the near-
est neighbour distance of 4 pixels, we set the number of the
reference points K as 4 on the feature map with stride 8.
We experimentally analyze the accuracy sensitivity of this
parameter in Table 1. As shown from the results, the model
with K=1 still achieves state-of-the-art accuracy, although
it’s reference points are too few to cover all the heads in
congested areas. Setting K to a value greater than 4 leads
to inferior accuracy, which might be caused by the increase
of negative samples.

K MAE MSE nAPδ
K=1 54.08 84.37 60.1
K=4 52.74 85.06 64.4
K=8 53.43 87.57 58.8
K=12 54.13 87.9 58.6
K=16 53.47 86.1 58.3

Table 1. The performance change w.r.t. the number K for
reference points. For an overall comparison, we use δ =
{0.05 : 0.05 : 0.50}.

4. Localization Performance

Method F1-Measure Precision Recall
FasterRCNN [11] 0.068 0.958 0.035

TinyFaces [3] 0.567 0.529 0.611
RAZ [9] 0.599 0.666 0.543

Crowd-SDNet [14] 0.637 0.651 0.624
PDRNet [6] 0.653 0.675 0.633

TopoCount [1] 0.692 0.683 0.701
D2CNet [2] 0.700 0.741 0.662

Ours 0.712 0.729 0.695
Table 2. Comparison for the localization performance on NWPU.

Thanks to the scarce yet valuable box annotations pro-
vided by the NWPU-Crowd dataset [13], we could com-



pare the localization performance of our P2PNet with other
competitors using their metrics. As shown in Table 2, our
P2PNet achieves the best F1 score among the published
methods with similar computation complexity.

Among a few existing localization-based methods, al-
most none of them have official codes or third-party re-
implementations except for [12]. So for a fair comparison,
we evaluate the nAP0:05:0:05:0:50 of [12] on SHTech PartA,
SHTech PartB and QNRF, which are 33.2%, 45.8% and
8.9% respectively. As shown from the results, our P2PNet
achieves significantly higher localization performance in
terms of nAP, especially on the challenging QNRF dataset.

5. Visual Results for Qualitative Evaluation

In Figure 1-13, we exhibit the results of several exam-
ple images with different densities from sparse, medium to
dense. As seen from these results, our P2PNet achieves im-
pressive localization and counting accuracy under various
crowd density conditions.

Additionally, from these qualitative results, we also find
that P2PNet may fail on some extreme large heads and gray
images (old photos). But similar failure cases could also
be found in other top methods, such as ASNet (CVPR’20)
[5], AMSNet (ECCV’20) [4], SDANet (AAAI’20) [10], etc.
Fortunately, these might be alleviated to some extent by
adding more relevant training data.
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Figure 1. Visual results of sparse scenes (1).
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Figure 2. Visual results of sparse scenes (2).
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Figure 3. Visual results of sparse scenes (3).



149 137

166 147

122 135

133 151

115 111
Image Ground Truth Prediction

Figure 4. Visual results of sparse scenes (4).
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Figure 5. Visual results of moderately congested scenes (1).
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Figure 6. Visual results of moderately congested scenes (2).
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Figure 7. Visual results of moderately congested scenes (3).
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Figure 8. Visual results of moderately congested scenes (4).
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Figure 9. Visual results of moderately congested scenes (5).
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Figure 10. Visual results of congested scenes (1).



1307 1336

1023 1012

1505 1505

1977 1874
Image PredictionGround Truth

1003 1017

1531 1520

Figure 11. Visual results of congested scenes (2).
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Figure 12. Visual results of congested scenes (3).
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Figure 13. Visual results of congested scenes (4).


