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A. Additional qualitative results

We present more qualitative results in the following three
categories.

Text-preserving Figure S4 shows examples of text-
preserving compression using a ROI mask.

Non-uniform quality maps Figure S5 presents com-
pression results using non-uniform quality maps on the
COCO [R6] validation set and the average bit allocation
maps of quantized latent representation ŷ. All these exam-
ple images were not included in our training set since we
trained our model using the COCO train split.

Uniform quality maps Figure S6, S7, S8, S9 show qual-
itative comparison results of our model, Mean & Scale
(M&S) Hyperprior model [R8], BPG (4:4:4) [R2] and JPEG
(4:2:0) [R10] on several Kodak images. We adapt the com-
pression rate of our model to that of M&S Hyperprior model
by adjusting the value of the uniform quality map. Our
model outperforms all other methods in terms of the visual
quality and PSNR/MS-SSIM scores at similar bit rates.

B. Additional RD performance comparisons

To show the proposed model is particularly suitable
for our task, we implement a variant of M&S Hyperprior
model [R8] as a naive spatially-adpative variable-rate ap-
proach and present it in Figure S1. The naive model has
same architecture as M&S Hyperprior model, but (x,m),
(y,m) and (ŷ,w) are inputs to the encoder, hyper-encoder
and decoder of it, respectively. We trained it with the
same training setting as our model was trained with. We
also report the official performances of M&S Hyperprior
model, Minnen et al. [R9] which allows per-patch quality
adaptation, and the performance of M&S Hyperprior model
trained by us for 2M iterations.
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Figure S1. The rate-distortion performances on Kodak dataset.
“M&S WIDE” is a wide-layer version of M&S Hyperprior model
which has the similar number of parameters to that of our model.
“Naive” is a naive implementation of spatially-adpative variable-
rate model which is based on M&S Hyperprior model.

Compared to M&S Hyperprior model trained by us, the
naive model shows performance degradation, which implies
that the naive approach is not sufficient for the task of the
image compression with quality map. Minnen et al. [R9]
shows poor quality compared to other models. Meanwhile,
we observe a slight drop in the performance of M&S Hyper-
prior model trained by us in comparison with the officially
reported performance of M&S Hyperprior model. It may be
because the original model was trained for about 6M itera-
tions as the authors mentioned1.

C. Model complexity
Table S1 compares the number of parameters and aver-

age encoding/decoding runtimes of our model and the base-

1https://groups.google.com/g/
tensorflow-compression/c/LQtTAo6l26U/m/
cD4ZzmJUAgAJ



Figure S2. Classification-aware quality maps and recontructions through iterations when λ = 0.01. The annotation in each quality map
denotes bpp/PSNR (dB)/MS-SSIM/Top-5/Top-1 classification result of the corresponding reconstructed image.

Table S1. Comparison of model complexity on Kodak dataset for
our model and the baseline models using a GPU.

# Parameters Rate Encoding (ms) Decoding (ms)
M&S [R8] 11M single 55 31

M&S [R8] WIDE 28M single 143 45
M&S + Context [R8] 14M single 5004 (82) 9876

Choi et al. [R4] 37M variable 8004 (185) 12973
Ours W/O SC 27M variable 250 37

Ours 28M variable 254 36

line models. We additionally trained a wide-layer version
of M&S Hyperprior model (304 channels) and denote it as
M&S WIDE. We used a machine with a Titan Xp GPU and
all models utilized the same entropy coder.

The M&S family requires multiple independent models
to cover wide range of rate (i.e., 6 models of M&S in Fig-
ure S1), thus the actual number of the parameters is the mul-
titude of the numbers in Table S1. M&S + Context [R8] and
Choi et al. [R4] require much coding time than our model
since they employ the autoregressive context model which
have a serial coding process. The encoding of such serial
context models can be made efficient by using masked con-
voltuion, e.g., for M&S + Context the encoding time de-
creased from 5004 ms to 82 ms. However, the decoding is
inevitably slow and cannot utilize parallel processing. Our
model outperforms M&S WIDE which has the similar num-
ber of parameters to ours as in Figure S1. The coding com-
plexity of our approach increases marginally compared to
the version without source conditioning (W/O SC) while
the performance improves significantly. These results im-
ply that simply increased parameters do not necessarily lead
to performance gain while the proposed SFT with SC effec-
tively improves the capacity of compression model.

D. Experiment details
D.1. Rate-distortion comparison

This section describes how we obtain the plots in Fig-
ure 6(a) in detail. For our model, we used a set of q-
valued uniform quality maps (q ∈ {0, 0.05, 0.10, ..., 1.0})
and computed the average metrics over test images for each
of 21 quality maps. Smaller spacing of q led to almost iden-
tical curves. For Choi et al. [R4], we extracted the RD
curves from the original paper. For other methods, we used
the results2 provided by authors of [R1, R8].

D.2. Classification-aware compression

This section describes how we obtain the plots in Fig-
ure 6(b) in detail. We constructed a test set based on the
ImageNet [R11] dataset by sampling 102 categories and
choosing 5 images per a category randomly. We iteratively
updated randomly initialized m by minimizing the loss for
the test set:

L = − logP (ŷ|m) + λLCE, (1)

where LCE denotes the cross-entropy loss. We took λ ∈
{0.0001, 0.001, 0.004, 0.01, 0.1, 1, 10, 100, 1000} and used
the results at 3 and 5 iterations for each plot. The accu-
racies converged to the known upper bound, the accuracies
on the original images. We adopted the L-BFGS [R7] solver
as an optimizer. During optimization, we used a pretrained
VGG16 [R13] to compute LCE loss while ResNet18 [R5]
was used at test time to validate the generalization perfor-
mance. For the Grad-CAM [R12] plots, we choose m =

2https://github.com/tensorflow/compression/
tree/master/results/image_compression



Table S2. Human evaluation results for 33 people when using se-
mantic ROI masks as quality maps. Average response rates for 16
test cases are presented. Each number in parentheses indicate the
quality value of ROI/non-ROI.

Uniform (0.25/0.25) ROI1 (0.65/0.15) ROI2 (0.8↑/0.02)
Best 16.1% 30.5% 53.4%

Worst 72.7% 7.6% 19.7%

αCAM as the quality maps with α ∈ {0, 0.1, 0.2, ..., 1.0},
where CAM denotes the map acquired by Grad-CAM.
Figure S2 visualizes classification-aware image compres-
sion results together with how the classification-aware qual-
ity maps are acquired through iterations.

E. Human evaluation
We conducted a human evaluation to verify that dif-

ferent quality specifications in semantic and background
regions can lead to perceptual improvement at same bi-
trates. We constructed 16 test cases from MSRA10K [R3]
by randomly sampling original images and corresponding
ROI masks. Each test case consists of the orinal image
and three reconstructed images compressed with different
qualtiy maps which give almost same bitrates. For each
case, we asked 33 people to select the best and worst re-
constructed images given the original image. The average
response rates are presented in Table S2.

We observe that the higher the quality value is used in
the semantic region, the more preferences occur as the best
perceptual quality at the same bitrate. Similarly, for the se-
lecitons of the worst images, the ROI-based quality maps
lead to better perceptual quality than uniform quality maps.
However, the votes for ROI2 as the worst images are more
than those of ROI1, though the quality value in the semantic
region of ROI2 is higher than that of ROI1. It implies that
very poor qualtiy of the non-semantic region is not negligi-
ble for human perception.

F. Example quality maps for training
Figure S3 presents examples of quality maps we used

for training. Specifically, we randomly generate the quality
maps using one of four different ways for each instance in a
mini-batch; (1) a uniform map (2) a semantic map of which
each class label is converted to random value (3) a gradation
image between two randomly selected values (4) a kernel
density estimation map of Gaussian mixture with random
mean, variance and number of mixtures.

G. Practical aspects of task-aware compression
One can raise some questions about feasibility and ne-

cessity of the task-aware compression; How would the task-
aware compression be applied in a real-world application
when a target label is not available? Why is the task-aware
optimization not redundant when we already have the label?
Wouldn’t it be just cheaper to store the task outputs instead

Source Image Uniform Segmentation Gradation Gaussian Mixture

Figure S3. Examples of quality maps used for training. For each
instance in a mini-batch, we randomly generated a quality map
among the four types.

of optimization for the task? The goal of the task-aware
compression is to reflect one’s preference of spatial quality
to a compressed image depending on target tasks. For ex-
ample, when constructing street view images, one may want
to decrease the quality of human faces while improving that
of signs. In video conference applications, the quality en-
hancement only in human region may be required. In this
respect, when the quality of particular semantic regions is
important, the classification-aware compression would be
useful as shown in the 5th column of Figure 2, S2. Even if
obtaining a ground-truth label or calculating a task loss is
unavailable, we can make an appropriate quality map using
external task models, e.g., ROI detection result, or Grad-
CAM as shown in Figure 6(b), 7, S4 instead of optimizing
the quality map. Note that for Grad-CAM in Figure 6(b),
we used a class with the highest score predicted by the clas-
sifier for each test image instead of the ground-truth. Thus,
the task-aware compression is still practically feasible with-
out the task labels.

Meanwhile, the task-aware compression can be utilized
when the task label itself is not a primary concern. For the
example of video conference applications, we do not want
to deliver the position of the human in the image or his/her
personal information, but want to deliver the compressed
images with high quality of the human region at the ex-
pense of the quality of background. Similarly, if we want
to preserve an object region well, the classification-aware
compression can be used regardless of the target label.



Figure S4. Reconstruction results using different quality maps (1st column) for the source image (1st row). The annotation in each quality
map denotes bpp/PSNR (dB)/MS-SSIM of the corresponding reconstructed image. The ROI mask for the text was used as the quality map
in 3rd and 4th row.



Figure S5. Examples of compression results using non-uniform quality maps.



Source Image

Ours (0.2406 / 25.46 / 0.9304) M&S (0.2406 / 24.85 / 0.9272)

BPG (0.2405 / 24.85 / 0.9173) JPEG (0.2513 / 21.34 / 0.8398)

Ground Truth Ours M&S BPG JPEG

Figure S6. Compression results including the source image, our result, M&S Hyperprior model [R8], BPG (4:4:4) and JPEG (4:2:0) on
Kodak 5 image. Each number in parentheses indicates bpp/PSNR (dB)/MS-SSIM of the reconstructed image. We adapt the compression
rate of our model to that of M&S Hyperprior model by adjusting the value of the uniform quality map. Our model outperforms all other
methods in terms of the visual quality and PSNR/MS-SSIM metrics at similar bit rates.



Source Image

Ours (0.1579 / 26.49 / 0.9013) M&S (0.1579 / 26.02 / 0.8975)

BPG (0.1570 / 25.90 / 0.8812) JPEG (0.1732 / 22.49 / 0.7856)

Ground Truth Ours M&S BPG JPEG

Figure S7. Compression results including the source image, our result, M&S Hyperprior model [R8], BPG (4:4:4) and JPEG (4:2:0) on
Kodak 14 image. Each number in parentheses indicates bpp/PSNR (dB)/MS-SSIM of the reconstructed image. We adapt the compression
rate of our model to that of M&S Hyperprior model by adjusting the value of the uniform quality map. Our model outperforms all other
methods in terms of the visual quality and PSNR/MS-SSIM metrics at similar bit rates.



Source Image Ours (0.1061 / 28.69 / 0.9127) M&S (0.1061 / 27.83 / 0.9067)

BPG (0.1061 / 28.41 / 0.9029) JPEG (0.1128 / 21.64 / 0.7177)

Ground Truth Ours M&S BPG JPEG

Figure S8. Compression results including the source image, our result, M&S Hyperprior model [R8], BPG (4:4:4) and JPEG (4:2:0) on
Kodak 19 image. Each number in parentheses indicates bpp/PSNR (dB)/MS-SSIM of the reconstructed image. We adapt the compression
rate of our model to that of M&S Hyperprior model by adjusting the value of the uniform quality map. Our model outperforms all other
methods in terms of the visual quality and PSNR/MS-SSIM metrics at similar bit rates.



Source Image

Ours (0.1772 / 29.18 / 0.9215) M&S (0.1772 / 28.92 / 0.9168)

BPG (0.1855 / 29.03 / 0.9143) JPEG (0.1901 / 25.89 / 0.8336)

Ground Truth Ours M&S BPG JPEG

Figure S9. Compression results including the source image, our result, M&S Hyperprior model [R8], BPG (4:4:4) and JPEG (4:2:0) on
Kodak 22 image. Each number in parentheses indicates bpp/PSNR (dB)/MS-SSIM of the reconstructed image. We adapt the compression
rate of our model to that of M&S Hyperprior model by adjusting the value of the uniform quality map. Our model outperforms all other
methods in terms of the visual quality and PSNR/MS-SSIM metrics at similar bit rates.
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