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In this supplementary material, we first explain our graph

weighting scheme with an example in Section A. Then we

present the details of our training dataset in Section B. In

Section C, we describe the detailed network architecture.

Next, we present the definition of the metrics for surface

evaluation in Section D. At last, we provide additional ex-

perimental results in Section E.

A. Graph Weighting

Corresponding to Section 3 in the main paper, we

present the tetrahedra graph weighting scheme of the ba-

sic method [3] by illustrating equations with their geomet-

ric meaning. As shown in Figure 1, a line of sight traverse

a series of tetrahedra (where M = 5), from T1 to T5 and

extended to T6 (TM+1 in the main paper) which is the tetra-

hedron right behind the end point p. The weighting process

starts from the point of view (c) marking it as the source

node (Equation 2a in the main paper). Along the line of

sight, accumulate the value αv to the connectivity of facets

that line of sight passes through from the front (Equation 2c

in the main paper). As for T6 behind the point, it is marked

as a sink node with constant weight (Equation 2b in the

main paper).

B. Training Dataset

Our training dataset is built based on textured mesh

models of public Multi-View Stereo (MVS) reconstruction

dataset BlendedMVS [4]. We select 5 textured models as

ground truth surfaces for training and 2 models for testing.

For each model, we uniformly sample points from the sur-

face. The number of sampled points depends on the actual

size and complexity of the structure, ranging from 500K to

10M points. We prefer sparse sampling since the more oc-

cluded points have been projected to the virtual views, the

more contrastive samples we will have. We collect datasets

by sampling virtual views (Section 4.1 in the main paper)
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Figure 1. Visibility and graph construction [3]. From top to bot-

tom, Upper: A line of sight from a reconstructed 3D point tra-

verses a sequence of tetrahedra, the graph construction, and the

assignment of weights to the tetrahedron and oriented facets. Mid-

dle: Soft visibility decay along the line of sight which is inversely

proportional to the distance to the end point. Lower: Correspond-

ing s-t graph and the cut solution.

Figure 2. Record visibility information in an image by rendering:

While points were rendered, the global index of the points been

recorded simultaneously.

and rendering them with our renderer. Our renderer is im-

plemented with OpenGL, which not only provides regular

color images and depth images but also records the original

index of each projection point, as shown in Figure 2.

Figure 3 shows an example out of 1414 virtual views.

The ground truth visibility is generated by comparing the

point-rendering depth map and the surface-rendering depth

map. If the difference of depth is less than ϵ = 0.05, it

will be marked as visible, otherwise, it will be marked as

occluded.
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(a) Ground truth surface (b) Sampled point cloud

(c) Surface-rendering depth map (d) Point-rendering color image

(e) Point-rendering ID map (f) Point-rendering depth map

(g) Ground truth visibility (h) Ground truth cleaned depth

map

Figure 3. The content of our dataset.

C. Architecture

Table 1 provides a detailed description of the input and

output tensor sizes of each module in our workflow. And

Table 2 presents the detailed architecture of the network,

including the size of each buffer.

D. Surface Evaluation Metrics

The quantitative comparison of two mesh surfaces is

a complicated problem. Alternatively, we employ highly

oversampled points of triangle surfaces to approximate

mesh to mesh metrics. In our experiment, we control the

number of points by the density of sampling. Furthermore,

to eliminate the randomness introduced by the sampling

method, the ground truth mesh is sampled twice to deter-

mine the scale factors for the following metrics.

Chamfer distance (CD) [1] . For each point, we find the

nearest neighbor in the other set and sums the distances

up. To ensure Chamfer distance as symmetric, we sum dis-

tances of P to Q and Q to P . K is a scale factor to leverage

between different datasets: K = 1
CD(S1,S2)

.

CD(P,Q) =
K

|P|

∑

p∈P

min
q∈Q

∥p−q∥2+
K

|Q|

∑

q∈Q

min
p∈P

∥p−q∥2. (1)

F-score [2] . As shown in Equation 2, the F-score is de-

fined as the harmonic mean between precision and recall.

P ⊆ R
3 is the point set sampled from the generated surface

while Q ⊆ R
3 is the point set sampled from the ground

truth surface. Threshold T is determined by computing

maximum distance between two point sets (S1,2 ⊆ R
3)

randomly sampled from the same ground truth surface:

T = maxs1∈S1
(mins2∈S2

∥s1 − s2∥2).

Precision(P,Q) =

∑
q∈Q

δ[minp∈P∥p− q∥2 < T ]

|Q|
, (2a)

Recall(P,Q) =

∑
p∈P

δ[minq∈Q∥p− q∥2 < T ]

|P|
, (2b)

F-score(P,Q) = 2 ·
Precision · Recall

Precision + Recall
. (2c)

E. Additional Experimental Results

In this section, we provide additional experimental re-

sults for better evaluation of our method. Table 3 shows the

data volume, source, and corresponding view generator for

all the datasets we used in our experiments. We can see that

different scales of data are evaluated in our experiment.

E.1. Extra Evaluation of Visibility Classifiers

In this section, we provide test scores on two more

datasets in Table 4 and Table 5 to evaluate our VDVNet

with datasets of different modalities, which are multi-view

stereo dataset and LiDAR scanning dataset.

E.2. Performance on Extreme Sparse Data

As shown in Figure 4, We used a series of downsampled

bull datasets to evaluate the performance of our method on



Module IO Description Data Dimension

Virtual View Sampler

Input Given Point Cloud n× 3
Input The flag indicate the pattern of view generator 1

Output 6 DoF poses m× 6× 1

Renderer

Input Given Point Cloud n× 3
Input 6 DoF pose 6× 1

Output Rendered sparse color image H ×W × 3
Output Rendered sparse depth map H ×W × 1
Output Rendered sparse point ID map H ×W × 1

CoarseVisNet
Input Normalized and binary mask attached sparse depth map H ×W × 2

Output Predicted mask of visible pixels H ×W × 1

Multiplication

Input Rendered sparse depth map H ×W × 1
Input Predicted mask of visible pixels H ×W × 1

Output Cleaned sparse depth map H ×W × 1

DepthCompNet
Input Normalized and binary mask attached cleaned sparse depth map H ×W × 2

Output Completed dense depth map H ×W × 1

Concatenation

Input Normalized and binary mask attached sparse depth map H ×W × 2
Input Normalized and binary mask attached cleaned sparse depth map H ×W × 1

Output Concatenated raw depth and completed depth map H ×W × 3

FineVisNet
Input Concatenated raw depth and completed depth map H ×W × 3

Output Predicted mask of visible pixels H ×W × 1
Graph-cut Input Given Point Cloud n× 3

based Input All rendered sparse point ID map m×H ×W × 1
Surface Input Predicted mask of visible pixels m×H ×W × 1

Reconstruction Output Reconstructed triangle surface Irregular

Table 1. Modules overview. We detail the input and output of all modules that appeared in our workflow. n is the number of input points,

m is the number of generated virtual views. H and W are the customized values which are set to 256× 256 in our experiments.

Part Layer Parameters Output Dimension

Encoder

Double PConv1BnReLU 3x3,64,64 H ×W × 64
MaxPool + Double PConv2BnReLU 2,3x3,128,128 H/2×W/2× 128
MaxPool + Double PConv3BnReLU 2,3x3,256,256 H/4×W/4× 256
MaxPool + Double PConv4BnReLU 2,3x3,512,512 H/8×W/8× 512
MaxPool + Double PConv5BnReLU 2,3x3,512,512 H/16×W/16× 512

Decoder

Bilinear Upsample1 2 H/8×W/8× 512
Concat1 cat(PConv4,Unsample1) H/8×W/8× 1024

Double PConv6BnReLU 3x3,256,256 H/8×W/8× 256
Bilinear Upsample2 2 H/4×W/4× 256

Concat2 cat(PConv3,Unsample2) H/4×W/4× 512
Double PConv7BnReLU 3x3,128,128 H/4×W/4× 128

Bilinear Upsample3 2 H/2×W/2× 128
Concat3 cat(PConv2,Unsample3) H/2×W/2× 256

Double PConv8BnReLU 3x3,64,64 H/2×W/2× 64
Bilinear Upsample4 2 H ×W × 64

Concat4 cat(PConv1,Unsample4) H ×W × 128
Double PConv9BnReLU 3x3,64,64 H ×W × 64

Sigmoid - H ×W × 1

Table 2. Detailed encoder-decoder network architecture used for our CoarseVisNet, DepthCompNet, and FineVisNet. PConv: partial

convolution layer. Double PConvBnReLU: PConv+BatchNorm+ReLU+PConv+BatchNorm+ReLU. Parameter of Double PConvBn-

ReLU: kernel size, number of filters for the first PConv, and the second PConv.



Name # Points Scale Source Generator

Triceratops 25K Object P2M Spherical

Tiki 5K Object P2M Spherical

Giraffe 25K Object COSEG Spherical

Bull 25K Object COSEG Spherical

DSLR 25K Object BlendedMVS Spherical

Birdcage 25K Object Thingi10k Spherical

Room0 100K Indoor CONet User

Room1 100K Indoor CONet User

MPT:SingleFloor 400K Indoor Matterport User

MPT:MultiFloor 500K Indoor Matterport User

Toronto Downtown #1 177K Outdoor ISPRS Nadir

Toronto Downtown #2 300K Outdoor ISPRS Nadir

Columbus City 925K Outdoor OGRIP Nadir

Church 500K Outdoor BlendedMVS Oblique

Archway 500K Outdoor BlendedMVS Oblique

Dragon Park 500K Outdoor BlendedMVS Oblique

Dragon Park (Teaser) 5M Outdoor BlendedMVS Oblique

Eco Park 500K Outdoor BlendedMVS Oblique

Pedestrian street 500K Outdoor BlendedMVS Oblique

YParc 2M Outdoor senseFly Nadir

UThammasat 5M Outdoor senseFly Nadir

Hotel 5M Outdoor senseFly Oblique

GSM Tower 3.3M Outdoor senseFly User

Street View 5M Outdoor MAI User

Crossroad 2.6M Outdoor KITTI User

Table 3. Details of data of our experiments, including their source,

volume of the data, as well as virtual view generator.

Visibility Estimator %P %R %F1 %AUC

HPR 90.12 79.58 86.2 75.81

UNet 89.54 84.21 86.6 75.89

UNet + PConv 90.23 84.7 87.18 78.09

VISIBNET 89.13 86.74 87.74 75.8

Ours w/o DepthComp or PConv 89.49 86.43 87.75 77.37

Ours w/o DepthComp 89.65 90.25 89.83 78.73

Ours w/o PConv 89.6 89.28 89.33 78.17

Ours 90.09 93.3 91.52 81.59

Table 4. Quantitative analysis of methods on binary visibility clas-

sification task on MVS dataset.

Visibility Estimator %P %R %F1 %AUC

HPR 80.6 85.48 82.14 81.29

UNet 78.71 75.58 76.6 79.84

UNet + PConv 77.98 82.49 79.67 81.17

VISIBNET 76.98 85.59 80.52 80.76

Ours w/o DepthComp or PConv 77.17 85.18 80.26 79.11

Ours w/o DepthComp 78.00 87.23 81.81 81.69

Ours w/o PConv 79.29 91.29 84.31 83.57

Ours 80.4 93.71 85.27 83.96

Table 5. Quantitative analysis of methods on binary visibility clas-

sification task on Simulated LiDAR dataset.

very low-density points. The reconstruction quality of our

method drops obviously as long as the number of points

decreasing. It is because the initial mesh created by De-

launay is a bottom-up approach, and the graph-cut only ap-

plies a smooth constraint. The core idea of the proposed

method is to recover details in the mesh reconstruction pro-

cess based on correct visibility recovery, where these orig-

inal point measurements are available. Therefore having

sufficient points will show this advantage.

SPSR Ours
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Figure 4. Performance on a series of point clouds with different

densities.

E.3. Efficiency Statistics

We report the processing time for each component of

our method in Table 6 and compare it with the SPSR

method. Efficiency performance is evaluated on the Lap-

top with Intel-4700MQ, 16 GB RAM, and Nvidia 970M

(6GB GRAM), which is a challenge on such a resource-

limited platform for reconstruction approaches. The pro-

cessing time of our method increases with the number of

points and virtual views, and the SPSR is related to the

depth of the octree. In our experiment, we decide the num-

ber of views by the complexity of the scene, and we set

the depth to 10 levels for SPSR. In addition, our VDVNet

takes 993MB GPU RAM for visibility estimation (image

size: 256x256).

E.4. Qualitative Evaluation of Visibility Classifiers

Figure 5 shows the qualitative evaluation of different vis-

ibility estimators and visually shows the result in Table 2 in

our main paper. The improvement in classification accuracy

is reflected in the sharpness of the reconstructed surface de-

tails.



Data
# of # of virtual Visibility Graph-based Overall Normal SPSR Peak RAM Peak RAM

points views estimation reconstruction (ours) estimation (ours) (SPSR)

Object (Quantitative) 25K ∼30 ∼3s ∼1s ∼4s ∼1s ∼3s ∼0.1GB ∼0.2GB

Indoor (Quantitative) 100K ∼50 ∼8s ∼4s ∼12s ∼3s ∼6s ∼0.2GB ∼0.3GB

Outdoor (Quantitative) 500K ∼100 ∼14s ∼13s ∼27s ∼4s ∼22s ∼0.8GB ∼1.8GB

YParc 2M 203 24s 152s 179s 15s 192s 3.4GB 5.2GB

UThammasat 5M 300 30s 278s 311s 38s 204s 4.3GB 5.9GB

Hotel 5M 340 38s 229s 272s 40s 208s 4.1GB 5.9GB

GSM Tower 3.3M 87 10s 92s 103s 23s 195s 4.2GB 5.1GB

Crossroad 2.6M 114 15s 71s 86s 12s 105s 3.2GB 4.6GB

Table 6. Computational efficiency comparison with SPSR. To note that our overall processing time including image rendering, visibility

estimation, and graph-cut based reconstruction.

(a) Input (b) HPR (c) UNet (d) Ours

Figure 5. Qualitative comparison of visibility estimators. From top

to bottom, the data is Bull, Tiki, DSLR, and Room1.

E.5. Extra Robust Evaluation

In Figure 6 we present extra results for robustness evalu-

ation of noises (Figure 9 in the main paper).

E.6. Extra Qualitative Evaluation

We present extra results qualitatively in three scales, for

each, small objects (Figure 7), indoor scenes (Figure 8), and

large-scale outdoor datasets (Figure 9).
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(a) Input (b) P2M (c) P2S (d) MIER (e) CONet (f) SPSR (g) Ours

Figure 7. Qualitative comparison on additional small object level datasets. From top to bottom, the data is Giraffe, Tiki, Bull, and Tricer-

atops.

(a) Input Points (b) CONet (c) SPSR (d) Ours

Figure 8. Qualitative comparison on additional indoor datasets. From top to bottom, the data is Room1, MPT:SingleFloor, and

MPT:MultiFloor.



(a) Input Points (b) SPSR (c) Ours

Figure 9. Qualitative comparison on additional large scale datasets. From top to bottom, the data is YParc, GSM Tower, Archway, UTham-

masat, Hotel, and Dragon Park.


