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This document provides additional illustrations of the
SVD functions. First, we analyze the convergence prop-
erty of Power Iteration method and its impact on estimating
the SVD gradient (Sec. 1). Then, we explain how the Tay-
lor polynomial gradient emerges from the Power Iteration
gradient [15] and their theoretical equivalence on certain
premises (Sec. 2). Finally, several superior properties of
Padé approximants are introduced and proved (Sec. 3).

1. Convergence of Power Iteration
In the paper, we conjecture that Power Iteration (PI)

method converges only when the first eigenvalue λ1 is dom-
inant. Here we analyze its convergence property and discuss
the impact on the gradients associated with SVD [15]. To
compute the approximate leading eigenvector u, PI takes
the iterative update:

u(k) =
Pu(k−1)

||Pu(k−1)||
(1)

By induction on k, we have:

u(k) =
Pku(0)

||Pku(0)||
, k ≥ 1 (2)

Since P is diagonalizable, the initial eigenvector can be rep-
resented by a basis function of the true eigenvectors:

u(0) =

n∑
i=1

αixi (3)

where αi is the scalar coefficient, and xi is the true eigen-
vector of P. Injecting eq. (3) into eq. (2) yields:

Pku(0) =

n∑
i=1

αiP
kxi, k ≥ 1 (4)

Relying on the fact Pxi=λixi, eq. (4) can be re-formulated
as:

Pku(0) =

n∑
i=1

αiλ
k
i xi = α1λ

k
1(x1+

n∑
i=2

αi
α1

(
λi
λ1

)kxi) (5)

If the first eigenvalue λ1 is dominant, i.e., λi satisfies the
following condition:

λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn (6)

When k→∞, for any λi

λ1
, ( λi

λ1
)k vanishes and eq. (5) be-

comes Pku(0)→α1λ
k
1x1. The constant α1 would be can-

celled by the l2 normalization of each step. Thus, the esti-
mation u(k) aligns itself to the direction of the first eigen-
vector x1 and the convergence is guaranteed.

When the first eigenvalue λ1 is not dominant (i.e.,
λ1=λ2), (λ2

λ1
)k does not vanish and PI method cannot con-

verge to the leading eigenvector x1. From eq. (5), we can
also learn that the convergence rate depends on the ratio of
the first two eigenvalues λ2

λ1
. The lower the ratio is, the faster

the convergence would be. When λ2

λ1
is close to or equal to

1 (see Fig. 3 in the paper), PI does not well approximate
the leading eigenvector within limited iterations. As a con-
sequence, the associated eigenvalue and gradients would be
poorly estimated.

2. Relation between PI and Taylor Gradient
Wang et. al. [15] proposed to use PI method to compute

the associated SVD gradients. They did not explicitly re-
late PI with the Taylor polynomial, but the relation between
these two methods already emerged. To derive their con-
nections, we first re-introduce the ordinary SVD gradients
and PI gradient, then explain how Taylor polynomial gra-
dient emerges from the former two methods, and end with
the theoretical equivalence of PI and Taylor gradients on the
premise that λ1 is dominant.
Ordinary SVD Gradient. Consider the covariance matrix
P, the forward eigendecomposition is given by:

P = UΛUT (7)

where U and V are the corresponding eigenvector matrix
and eigenvalue matrix, respectively. Given the loss function
l, the partial derivative passed to P is computed as:

∂l

∂P
= U((KT ◦ (UT ∂l

∂U
)) + (

∂l

∂Λ
)diag)U

T (8)



where the skew-symmetric matrix K consists of elements
Kij defined by:

Kij =

{
1

λi−λj
, i 6= j,

0, i = j.
(9)

Injecting eq. (9) into eq. (8) yields:

∂l

∂P
=

n∑
i=1

n∑
j 6=i

1

λi − λj
uju

T
j

∂l

∂ui
uTi +

n∑
i=1

∂l

∂λi
uiu

T
i

(10)
where n is the total number of eigenvalues, ui is the i-th
row eigenvector of U. The instability of the analytical gra-
dient arises from λi−λj in the denominator of the first term.
If the two eigenvalues are very close or even equal, the re-
sultant gradient tends to be infinite and cause overflow.
Power Iteration Gradient. As formulated in [17], the PI
gradients can be computed as:

∂l

∂P
=

K−1∑
k=0

I− u(k+1)u(k+1)T

||Pu(k)||
∂l

∂u(k+1)
u(k)T ,

∂l

∂u(k)
= P

I− u(k+1)u(k+1)T

||Pu(k)||
∂l

∂u(k+1)
.

(11)

[15] suggested that the initial eigenvector estimation starts
with the accurate one calculated via SVD. Feeding it to
Power Iteration defined in eq. (1) leads to:

u = u(0) ≈ u(1) ≈ u(2) ≈ · · · ≈ u(K+1) (12)

This equation generally holds when the first eigenvalue λ1
is dominant. By exploiting this equation in eq. (11), the
gradient ∂l

∂P can be re-written as:

∂l

∂P
=
( (I− uuT )

||Pu||
+

P(I− uuT )

||Pu||2
+

· · ·+ PK(I− uuT )

||Pu||K+1

) ∂l
∂u

uT
(13)

Relying on

Pk = λk1u1u
T
1 + λk2u2u

T
2 + · · ·+ λk3u3u

T
3 ,

||Pu||k = ||λku||k = λk.
(14)

The gradient in eq. (13) can be further formulated as:

∂l

∂P
=
(∑n

i=2 uiu
T
i

λ1
+· · ·+

∑n
i=2 λ

K
i uiu

T
i

λK+1
1

) ∂l

∂u1
uT1 ,

∂l

∂P
=
( n∑
i=2

( 1

λ1
+

1

λ1
(
λi
λ1

)1 + · · ·+ 1

λ1
(
λi
λ1

)K
)
uiu

T
i

) ∂l

∂u1
uT1

∂l

∂P
=
( n∑
i=2

1

λ1

(
1 + (

λi
λ1

)1 + · · ·+ (
λi
λ1

)K
)
uiu

T
i

) ∂l

∂u1
uT1 .

(15)

This equation defines a geometric progression. When k →
∞, we have:
1

λ1

(
1 + (

λi
λ1

)1 + · · ·+ (
λi
λ1

)K
)
≈ 1

λ1

1

1− λi

λi

=
1

λ1 − λi
(16)

If we read the equation from right to left, it is easy to find
that eq. (15) actually defines the Maclaurin series of the
Taylor expansion for function 1

λ1−λi
. Consider the instabil-

ity term 1
λi−λj

of the SVD gradients in eq. (8), the Taylor
polynomial gradient naturally arises if we apply the same
property on the ordinary SVD gradients.
Taylor Polynomial Gradient. To obtain the Taylor poly-
nomial gradients, we first use the property in eq. (16) to
expand the skew-symmetric matrix K as:

Kij =
1

λi
· 1

1− (λj/λi)
≈ 1

λi
(1+

λj
λi

+(
λj
λi

)2+· · ·+(
λj
λi

)K)

(17)
Here it is the Taylor expansion of function f(x)=1/(1−x)
at x=0 to degree K, and the higher-order term is discarded.
According to Cauchy root test, the Taylor series only con-
verges when |λj/λi|<1. When j<i, the ratio λj/λi is
larger than 1 and thus outsides the convergence radius. To
avoid this issue, we can split the matrix K into two triangu-
lar parts and re-write the right first term of eq. (10) as:
n∑
i=1

( n∑
j>i

1

λi − λj
uju

T
j

∂l

∂ui
uTi −

n∑
j<i

1

λj − λi
uju

T
j

∂l

∂ui
uTi

)
(18)

where the first term is the upper triangle when j>i and
λj/λi≤1, and the second term defines the lower triangle
when j<i and λj/λi≥1. As K is skew-symmetric , we
only need to calculate the upper part, i.e., the first term that
can converge. Introducing the Taylor polynomial defined
in eq. (17) into eq. (18), the first term is re-expressed as:

n∑
j>i

1

λi
(1+

λj
λi

+(
λj
λi

)2+· · ·+(
λj
λi

)K)uju
T
j

∂l

∂ui
uTi (19)

Notice that now the Taylor gradient defined in eq. (19) is
quite similar with the PI gradient in eq. (15). If we set i=1
for eq. (19), which represents the derivative w.r.t. the domi-
nant eigenvector v1, two equations are identical and Taylor
polynomial gradient is equivalent to PI gradient. This re-
mains the same also for the other eigenvectors. The equiv-
alence holds when the first eigenvalue λ1 is dominant and
therefore PI gradient is valid. That being said, the Taylor
polynomial gradient which emerges from the ordinary SVD
gradient and PI gradient is actually a more general expres-
sion of the gradient calculated by PI method.

3. Properties of Padé Approximants
We introduce three relevant properties of Padé approxi-

mants and give proofs on the first and the last theorems.



Uniqueness of Solution. Padé approximants are defined by
matching a given Taylor series and have the unique solution
for each matched pair. [2] gives the following theorem:

Any existing [M/N ] Padé approximants to their formal
power series A(x) has the unique solution.

This theorem is easy to be proved. Suppose
there are two such Padé approximants P (x)/Q(x) and
U(x)/V (x) of the same degree, they must satisfy
P (x)/Q(x)−U(x)/V (x)=O(xM+N+1) as both approxi-
mate the same series. Multiplying Q(x)V (x) on both
sides lead to P (x)/Q(x)=U(x)/V (x). Since by definition
Q(0)=V (0)=1 and both P and Q, U and V are relatively
prime, we can conclude that the supposedly different ap-
proximants are the same.
Special Case of Continued Fraction. Continued fraction
is known as one of the best rational approximation tech-
niques [13]. A general continued fraction expression takes
the form as:

C = b0 +

∞∑
i=1

ai
bi+

= b0 +
a1

b1 +
a2

b2+
a3

b3+...

(20)

where ai and bi are partial numerator and denominator, re-
spectively. If the nth convergent of eq. (20) is denoted as a
fraction An/Bn. , the recursive relations of the successive
convergents can be expressed as

An+1 = bn+1An + an+1An−1,

Bn+1 = bn+1Bn + an+1Bn−1.
(21)

Note that eq. (21) resembles the recursive relation of numer-
ator PM (x) and denominatorQN (x) of Padé approximants.
Therefore, Padé approximants can be viewed as a special
case of continued fraction. Particularly in diagonal case, we
have: The successive convergents of Jacobi-type continued
fractions can be given by corresponding diagonal sequence
[1/0], [2/1], . . . of Padé approximants. This theorem has
been extensively proved in the literature [2, 1, 4]. It allows
us to associate Padé approximants to continued fraction and
calculate Padé coefficients recursively using eq. (21). This
kind of recursive computation is usually more stable than
solving linear equations, as the solution of linear equations
might be close to the singularities of Toeplitz matrices [6].
Enlarged Convergence Range. We present the follow-
ing theorem in the paper without proof: If the function
f(z) is a Stieltjes transform f(z)=

∫ b
a

1
z−xdu(x) of a com-

pactly supported measure u(x) in [a,b], then the associ-
ated [N+1/N ] diagonal Padé approximants are orthogonal
and there exists such function r(x)>1 that the convergence
lim
N→∞

|f(z)−PN+1(z)
QN (z) |

1
N = 1

r2 is exponential in [a,b]. The

theorem describes the orthogonality constraints and conver-
gence property of diagonal Padé approximants. The orthog-
onality where

∫ b
a
QN (x)PN+1dµ(x)=0 is not easy to be

proved, the readers are kindly suggested to refer to [14] for
a detailed review. Taking the orthogonality of PN+1 as the
condition in hand, we give a concise proof on the conver-
gence.

Proof. Given that the function f(z) is a Stieltjes trans-
form f(z)=

∫ b
a

1
z−xdµ(x) of a compactly supported mea-

sure µ(x) in [a,b], the denominator polynomial in the Padé
approximation is orthogonal polynomial for the measure µ
on the interval [a,b]:∫ b

a

xkQN (x)dµ(x) = 0 (22)

The numerator polynomial is given by

PN+1(z) =

∫ b

a

QN (z)−QN (x)

z − x
dµ(x) (23)

By normalizing eq. (22), the approximation error of Padé
approximants is calculated as:

f(z)− PN+1(z)

QN (z)
=

1

QN (z)

∫ b

a

QN (x)

z − x
dµ(x) (24)

Observe that

QN (z)

∫ b

a

QN (x)

z − x
dµ(x) =∫ b

a

QN (x)(QN (z)−QN (x))

z − x
dµ(x) +

∫ b

a

Q2
N (x)

z − x
dµ(x)

(25)
By orthogonality constraint the first integral on the right
side vanishes. The error then becomes:

f(z)− PN+1(z)

QN (z)
=

1

Q2
N (z)

∫ b

a

Q2
N (x)

z − x
dµ(x) (26)

Now the error contains two parts 1
Q2

N (z)
and∫ b

a
Q2

N (x)
z−x dµ(x). The integral term is actually a Markov

function for the probability measure Q2
N (x)dµ(x) when

QN is orthonormal. It can be estimated by a strictly
positive distance measure defined as:

dK := inf{|z − x| : z ∈ K,x ∈ [a, b]} (27)

where K is a compact set that z belongs to. Then we have:∣∣∣∣∣
∫ b

a

Q2
N (x)

z − x
dµ(x)

∣∣∣∣∣ ≤
∫ b

a

Q2
N (x)

|z − x|
dµ(x) ≤ 1

dK
(28)

This bound is independent of the polynomial degree N . So
the convergence is completely determined by the asymp-
totic behavior of QN . By measuring the logarithm energy
for the leading coefficients of QN , [14] further shows that

lim
N→∞

|QN (z)| 1N =
4

b− a
exp

(
−
∫ b

a

log
1

|z − x|
dµe(x)

)
(29)



where µe is a unique probability measure on [a,b], and the
right hand side is larger than 1 when z moves away from
[a,b]. Let r denotes the right hand side of eq. (29), the error
in eq. (26) can be re-formulated as:

lim
N→∞

∣∣∣∣∣f(z)− PN+1(z)

QN (z)

∣∣∣∣∣ = 1

r2
, r > 1 (30)

We can conclude that the diagonal Padé approximants have
exponential convergence in [a,b].



This document introduces the experimental settings,
some analyses on the SVD meta-layers, and extra ablation
studies. First, we present the experimental settings in Sec. 4.
Subsequently, Sec. 5 and Sec. 6 justify the degree selection
of the Taylor series and compare the upper bound of the
gradient for each SVD method, respectively. Finally, Sec. 7
describes the results of ablation studies on the random seeds
and warm-up epochs.

4. Experimental Settings
Models and Datasets. Following [11, 10], we first take
AlexNet [9] and ResNet-50 [5] as the backbones and con-
duct experiments on ImageNet 2012 [3] for the large-scale
visual recognition. This dataset has 1.28M images for train-
ing and 50K images for testing. The covariance pooling
meta-layer is inserted before the fully-connected layer of
each model. For AlexNet architecture, the outputs of con-
volutional layers are 13×13×256 tensor. For ResNet ar-
chitecture, we add 1×1 convolution to squeeze the chan-
nels of global representation from 2048 to 256. There-
fore, the covariance matrices of both networks are of the
same size 256×256. Since the covariance is a symmetric
matrix, only the upper triangular part is taken and passed
to the fully-connected layer. After training GCP models
on ImageNet, we then conduct experiments on the task
of Fine-Grained Visual Categorization (FGVC). The pre-
trained ResNet-50 with different GCP meta-layers using
the hybrid training strategy are fine-tuned on three popular
fine-grained benchmarks, i.e., Caltech Birds (Birds) [16],
Stanford Dogs (Dogs) [7], and Stanford Cars (Cars) [8].
The Birds dataset contains 11, 788 images belonging to 200
species. The Dogs dataset includes 20, 580 images of 120
breeds of dogs, and the Cars dataset consists of 16, 185 im-
ages from 196 classes of cars.
Implementation Details. All the source codes are imple-
mented in Pytorch. Except that the forward eigendecompo-
sition is performed on CPU for faster speed, the other oper-
ations are conducted on GPU. For the SVD-TopN method,
we keep the top 200 out of 256 eigenvalues. The maximum
gradient for the SVD-Trunc method is limited to 1010. We
set the iteration times as 10 for the SVD-Newton method.
For SVD-Taylor and SVD-Padé, we truncate the Taylor se-
ries to degree 100 and match the diagonal Padé approxi-
mants also to degree 100, respectively. During the forward
pass, the eigenvalues that are smaller than EPS, i.e., the
smallest positive number that the data precision can repre-
sent, are set as EPS for numerical stability.
ImageNet Setting. On ImageNet, the AlexNet is trained for
30 epochs with an initial learning rate set as 10−1.1. The
learning rate decays by 10 every 10 epochs. For training
ResNet, we use the same learning rate to train for 60 epochs
but decays by 10 at epoch 30 and epoch 45. When applying
the hybrid training strategy on AlexNet, all the methods are

warmed up for 1 epoch when switching to SVD methods.
The warm-up epoch for ResNet is set as 2. The batch size
is set to 128 for AlexNet and 256 for ResNet. We use SGD
for optimization, with momentum of 0.9 and weight decay
of 0.0001 for ResNet and 0.0005 for AlexNet. The network
parameters are randomly initialized for both AlexNet and
ResNet. During training, the images are resized to 256×256
and then cropped to 224×224, with random horizontal flip
augmentation. The inference is conducted on the 224×224
centered crop from the test image.
FGVC Setting. For FGVC datasets, the images are first re-
sized to 448×448 and then fed into the network. The 1000-
d fully-connected layer of the original model is changed to
fit the number of classes. The model is trained using SGD
with momentum 0.9 and weight decay 0.0001. The batch
size is set 10, and the training lasts 50 epochs for all the
datasets. The learning rate is set as 6×10−3 for the fully-
connected layer and 1.2×10−3 for the other layers. We
make the inference on the 448×448 centered crop of the
test image.

5. Choosing Degree of Taylor Series

Both SVD-Taylor and SVD-Padé need to match the
truncated Taylor series of degree K. For SVD-Taylor,
K determines the upper bound of gradient approxi-
mation (K+1)/λi and the discarded higher-order term∑∞
i=K+1(λj/λi)

i. As can be observed from Table 1, a
small K will yield poor approximation, but a large K in-
creases the computation time and still fails to well approx-
imate values close to the convergence boundary (λj/λi ≈
1). UnlessK is set very large (e.g., 1020), gradients near the
polar singularities can not closely estimated. Thus, choos-
ing an appropriate K can substantially influence the gradi-
ent approximation. For SVD-Padé, K has a slight effect on
the approximation due to the enlarged convergence range
of Padé approximants (see Table 2). The degree K is set
as 100 through cross-validation for the best performances
of SVD-Taylor. We also choose K=100 for SVD-Padé to
make sure that both methods agree up to the same degree.

Table 1. Approximation error of Taylor polynomial of different
degrees in double precision.

Degree
λj/λi 0.1 0.3 0.5 0.7 0.9 0.99 0.999

50 9e-19 7e-18 9e-16 4e-8 5e-2 60 950
100 9e-19 7e-18 2e-21 8e-16 2e-4 36 904
200 9e-19 7e-18 2e-21 4e-17 6e-9 13 817
300 9e-19 7e-18 1e-21 4e-17 1e-13 5 740

6. Upper Bound of Gradient

We first describe how the upper bound is attained for
each method in detail and then discuss their behaviors.



Table 2. Approximation error of diagonal Padé approximants of
different degrees in double precision.

Degree
λj/λi 0.1 0.3 0.5 0.7 0.9 0.99 0.999

50 2e-18 3e-17 2e-20 6e-17 3e-16 1e-13 1e-12
100 9e-19 5e-18 1e-21 5e-17 3e-16 8e-13 3e-10
200 2e-18 1e-17 6e-21 6e-18 1e-15 1e-13 2e-10
300 1e-18 8e-18 6e-21 5e-17 2e-15 1e-13 5e-10

SVD-Padé. Both SVD-Padé and SVD-Taylor decompose
the gradient function as:

Kij =
1

λi − λj
=

1

λi

1

1− λj/λi
(31)

The term 1
1−λj/λi

can be viewed as the function f(x)= 1
1−x

and we use Padé approximants to approximate it. Since the
function f(x) is monotonically increasing in the range [0,1],
the upper bound of Padé approximants is reached at x=1,
i.e., when the two eigenvalues λi and λj are identical. The
upper bound for eq. (31) can be represented as:

|Kij | ≤
∣∣∣ 1
λi

∣∣∣ · ∣∣∣
M∑
m=0

pm

1 +
N∑
n=1

qn

∣∣∣ (32)

The second fraction on the right side denotes the maximal
value of Padé approximants when λj

λi
=1. We compute this

result as 6.48e20. Now the upper bound of gradient depends
on 1

λi
. Suppose λi and λj simultaneously equal to EPS,

the resultant upper bound of SVD-Padé is attained. The
bound is calculated as 6.00e36 and it happens only when the
two eigenvalues simultaneously have the minimum possible
value (λi=λj=EPS).
SVD-Taylor. For SVD-Taylor, the upper bound relies
on the truncated degree of Taylor series K and the mini-
mum value of λi. Specifically, the Taylor polynomial is a
bounded estimation:

1

1− λj/λi
≈ 1+

λj
λi

+(
λj
λi

)2+· · ·+(
λj
λi

)K ≤ K+1 (33)

The equality is taken if λi=λj . Combining eq. (33)
with eq. (31), the analytical form of the upper bound can
be derived as:

|Kij | ≤
∣∣∣K + 1

λi

∣∣∣ (34)

Similar with SVD-Padé, when λi=λj=EPS, the upper
bound is attained as 4.55e17.
SVD-Trunc. As we directly truncate the gradient Kij by a
large constant T for SVD-Trunc, the upper bound of gradi-
ent is equal to T. The truncation and also the upper bound
are triggered when

∣∣∣ 1
λi−λj

∣∣∣≥T.
SVD-TopN. For SVD-TopN, the upper bound of gradient is
very likely to happen between the last kept eigenvalue λN

and the first abandoned eigenvalue λN+1. As λN+1 is trun-
cated to zero, the bound takes the form 1

λN
. The maximal

value is reached when λN=EPS.
SVD-Newton. As the iterative matrix-matrix product is in-
volved in the backward algorithm of Newton-Schulz itera-
tion, the upper bound for the SVD-Newton method can not
be derived. But from the empirical observation on the effec-
tive β-smoothness [12] (see Fig. 4 right in the paper), the
gradient is very smooth and the upper bound is expected to
be similar with SVD-Trunc.
SVD. The ordinary SVD gradient takes the form 1

λi−λj
.

When the two eigenvalues are equal, the gradient will ex-
plode and go to infinity.

Table. 3 summarizes the upper bound of gradientKij for
each SVD variant and their happening conditions. Com-
pared with the ordinary SVD gradients, these SVD reme-
dies reduce both the magnitude and the occurrence of the
upper bound. Our proposed SVD-Padé allows for the
largest gradient upper bound, but the maximal value is still
acceptable in the double precision (<1.79e308). Even for
the single precision (<3.40e38), the gradient is also numer-
ically stable and allowed. This can ensure that the SVD-
Padé meta-layer is compatible with the backbone either in
single or double precision. The compatibility also shows the
possibility that our SVD meta-layers can be trained by the
recent advanced mixed-precision training techniques (e.g.,
Pytorch 1.8 and Nvidia Apex 1.0) for acceleration and sta-
bility.

Table 3. Upper bound of the gradient Kij for each SVD method.
Methods SVD-Padé SVD-Taylor SVD-Trunc SVD-TopN SVD-Newton SVD

Analytical Form 1
λi
·

M∑
m=0

pm

1+
N∑

n=1
qn

K+1
λi

T 1
λN

/ 1
λi−λj

Maximal Value 6.00e36 4.55e17 1e10 4.50e15 / ∞
Trigger Condition λi = λj ≤ EPS λi = λj ≤ EPS

∣∣∣ 1
λi−λj

∣∣∣ ≥ T λN ≤ EPS / λi = λj

7. Ablation Studies

Impact of Random Seed. We measure the impact of ran-
dom seeds by having 5 runs for SVD-Padé meta-layer on
AlexNet using the standalone training strategy. Different
random seeds do influence the network in the early epochs,
but the impact gets weakened in the later stage. The final er-
ror fluctuates within 0.1%. This variation would not shake
our deductions, as our SVD-Padé meta-layer outperforms
the other SVD remedies by at least 0.2%. We expect that
the fluctuation would be similar or smaller for ResNet and
hybrid training strategy.
Impact of Warm-up Epochs. We take our proposed SVD-
Padé as the meta-layer and evaluate the impact of warm-up
epochs when using the hybrid training strategy. As can be
seen from Table 4, two epochs achieve the best results in
the final error. If warming up for more epochs, no obvious
performance gain is observed in the final error but the best



error continues to improve. It is also worth mentioning that
the performance is still competitive even without any warm-
up training. We set to 1 epoch for AlexNet in order not to
introduce heavy burdens on the training process.

Table 4. Validation error of AlexNet using SVD-Padé meta-layer
and hybrid the training strategy with various warm-up epochs. The
best three results are highlighted in red, blue, and green.

Settings Final Error (%) Best error (%)
top-1 top-5 top-1 top-5

no warm-up 47.89 23.82 47.75 23.63
1 epoch 47.76 23.48 47.63 23.21

2 epochs 47.70 23.39 47.59 23.23
3 epochs 47.95 23.57 47.54 23.14

iSQRT-COV [10] 47.95 23.64 47.81 23.54
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1975. 3

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[6] JOSEF Kallrath. On rational function techniques and pade
approximants. an overview, 2002. 3

[7] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In First Workshop on Fine-Grained Visual
Categorization, IEEE Conference on Computer Vision and
Pattern Recognition, Colorado Springs, CO, June 2011. 5

[8] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 5

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 5

[10] Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. To-
wards faster training of global covariance pooling networks
by iterative matrix square root normalization. In CVPR,
2018. 5, 7

[11] Peihua Li, Jiangtao Xie, Qilong Wang, and Wangmeng Zuo.
Is second-order information helpful for large-scale visual
recognition? In ICCV, 2017. 5

[12] Yurii Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science & Busi-
ness Media, 2003. 6

[13] Michael James David Powell et al. Approximation theory
and methods. Cambridge university press, 1981. 3
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