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1. Maximization of sim(ẑi, ẑj)
In order to minimize the PeCLR cost function:

Li,j = − log
exp (sim((z̃i, z̃j)/τ)∑2N

k=1 1[k ̸=i] exp (sim(z̃i, z̃k)/τ)
, (1)

We need to maximize the numerator sim(z̃i, z̃j) where
z̃i = (tgi )

−1zi. Here we show that this leads to the de-
sired property of equivariance. For convenience, we restate
the property of equivariance. Given an image In

i , a trans-
formation tgi , a model f is equivariant wrt. to tgi if:

tgi f(I
n
i ) = f(tgi (I

n
i )). (2)

Recall that for vectors x,y ∈ Rm, maxx,y sim(x,y) = 1.
For a given x, any y = ax, a ∈ R fulfills this property.
Due to this, any scaling effect is removed and f can output
any multiple of x to satisfy the equation. Hence we assume
tgi to contain rotation and translation transformations. For
simplicity, we set a = 1, hence x = y. In the following,
we will drop the superscript g and n for ease of notation.
Recall that ti(I) = Ii, f(Ii) = zi. We abuse notation
slightly, where ti corresponds to a function performing ge-
ometric transformation applied to an image or an affine ma-
trix which can be applied to a vector. In other words, if
ti corresponds to a rotation by 90◦, then ti(I) rotates the
image by 90◦ and tix is a matrix vector multiplication, re-
sulting in rotating vector x by 90◦. We have:

ẑi = ẑj

(ti)
−1zi = (tj)

−1zj

zi = ti(tj)
−1zj | def. t̂ij := ti(tj)

−1

zi = t̂ijzj

f(Ii) = t̂ijzj

f(ti(tj)
−1Ij) = t̂ijzj

f(t̂ijIj) = t̂ijf(Ij)

(3)

Hence, fulfilling Eq.1 leads to the desired property of equiv-
ariance in Eq.2 for rotation and translation in theory. In
practice, due to the re-scaling procedure described in Sec. 3
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Figure 1: Comparing normalized and absolute scale inver-
sion. Here, PeCLR represents the normalized translation
and direct translation is a model inverting scale without nor-
malization. For comparison, we show the results on Sim-
CLR too. We see that directly applying a translation has a
detrimental effect on performance, performing worse than
SimCLR. However, using scaling PeCLR leads to superior
performance.

in the main paper (and elaborated on in Sec. 2), it will be
proportionate equivariant to the translation term. Note that
this does not take into account clippings that occur when
image rotate and translate out of bounds.

2. Normalizing translation
We investigate the effect of our proposed translation nor-

malization procedure. We briefly recap the main motivation
behind normalizing translation, as mentioned in Sec. 3 of
the main paper. Recall that PeCLR inverts all transforma-
tion performed on images in latent space.

Scaling and rotation are transformations that are per-
formed relative to the magnitude. On the other hand, trans-
lation is performed in terms of an absolute quantity. Be-
cause images are translated in terms of pixels, inverting
the translation in latent space by the same quantity may
be detrimental. This is due to the differing magnitudes of
the pixel and latent space. Therefore we translate the latent
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space sample zn by a quantity proportional to its magni-
tude.

To achieve this, we compute the proportional translation
of the image with respect to its size (i.e v

L , where v is the
translation vector applied to the image of length L). The
proportional translation is then multiplied by the magnitude
of the latent space, defined as Lz = max(zi)−min(zi). In
summary, the resulting translation whose inverse is applied
to zi is computed as follows:

v̂ =
v

L
Lz (4)

Next, we evaluate this choice of normalization. This is done
by evaluating the feature representation with and without
our proposed normalization in the same manner as in Sec
4.3 in the main paper. Fig. 1 compares performance of
PeCLR with and without translation normalization, as well
as SimCLR. We observe that the error of applying direct
translation, which omits the normalization scheme results
in high errors, performing worse than SimCLR. However,
using normalization leads to the best representation, out-
performing both SimCLR and direct translation. This quan-
titatively motivates the use of our normalization procedure.

3. Training details

Here, we give more details on the training procedure of
PeCLR. Self-supervised pre-training is performed for 100
epochs, which is empirically determined to perform best.
Following [3], we use ADAM wrapped with LARS and a
batch size of 2048. In order to fit the model on a RTX
2080 Ti, we accumulate gradients across smaller batches
before back-propagating and use mixed precision for train-
ing. Learning rate is set to lr=

√
batch size ∗ 1e-4, where

a linear warmup is performed for the first 10 epochs. Pro-
ceeding that, we use cosine annealing for the remainder of
training. While pre-training with multiple datasets, we per-
form weighted sampling so that a batch consisted of roughly
equal amount of samples of each dataset. For PeCLR, we
augment the image samples using rotations r ∈ [−45, 45],
translation t ∈ [−15, 15]2 and scaling s ∈ [0.6, 2.0]. We
pick these ranges empirically and find them to perform
best. Increasing these ranges degrade performance and
sometimes lead to stability issues. As appearance trans-
formation, we applied color jitter via adjust hue, saturation
and brightness. The former two were scaled by a factor
s ∈ [0.01, 1.0] whereas for brightness, we sample scal-
ing factor s ∈ [0.5, 1.0], bias b ∈ [5, 20] and compute
avbrightness + b, where vbrightness is the brightness value.
Supervised fine-tuning is performed for 100 epochs. The
adam optimizer with a learning rate of 5e-4 is used in
conjunction with cosine annealing. The batch size is set
to 128. Data augmentation is employed, using rotations
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Figure 2: Semi-supervised performance on FH using RN50.
We observe that by pre-training with PeCLR we achieve
greater accuracy in contrast to only training supervised.
However, the accuracy improvement between using FH and
FH+YT3D is smaller as compared to using RN50.

r ∈ [−90, 90], translation t ∈ [−20, 20]2 and scaling
s ∈ [0.7, 1.3].

4. Semi-supervised learning: RN50

We conduct the semi-supervised experiment in Sec. 4.4
in the main paper with RN152. In this section, we experi-
ment with RN50 in the same setting as in Sec. 4.3 to show
the benefit of using deeper networks.

Following the same experiment steps in Sec. 4.4, we
first pre-train our RN50 encoder self-supervised on FH with
PeCLR. Next, the encoder is fine-tuned supervised on vary-
ing amounts of labeled data from FH. We term the resulting
model MFH . We compare our proposed pre-training strat-
egy against a baseline method Mb, which is trained solely
supervised on the labeled data of FH, excluding the pre-
training step. Lastly, a third model is trained to demon-
strate the advantage of self-supervised representation learn-
ing with large training data, pre-trained on both FH and
YT3D, named MFH+Y T3D.

Fig. 2 shows the absolute 3D EPE for models
across all settings. We observe both PeCLR models
MFH ,MFH+Y T3D outperform the baseline model Mb

across different labeling percentages. However, the im-
provement of MFH+Y T3D over MFH is lessened when us-
ing the RN50 in comparison to the RN152 model. For ex-
ample, in the 20% labeled setting, by using FH and YT3D
for pre-training the RN152 model can gain an improvement
of 20% in 3D EPE with respect MFH . On the other hand,
the inclusion of additional data lead to an improvement of
8.6% for RN50. This result is consistent with [3], which
also shows increased performance for larger models.



HO-3D

Method 3D PA-EPE (cm)↓ PA-AUC ↑ 3D EPE (cm)↓ AUC ↑
Hasson et al. [6] 3.18 0.46 3.27 0.44
Hampali et al. [5] 3.04 0.49 8.42 0.27
Supervised 1.33 0.74 2.85 0.50
PeCLR (ours) 1.09 0.78 2.26 0.58

Table 1: HO3D evaluation. We pre-train a RN50 using PeCLR on YT3D and FH and then fine-tuned supervised on FH.
We compare with a model which is solely trained on HO3D (supervised) and note an improvement of 18% in 3D PA-EPE.
Performance of [5, 6] acquired from [4].

Dexter+Object AUC ↑
Mueller (2018)* [8] 0.48
Spurr (2018) [10] 0.51
Zimmermann (2018) [12] 0.57
Baek (2019)* [1] 0.61
Iqbal (2018)* [7] 0.67
Boukhayma (2019) [2] 0.76
Zhang (2019) [11] 0.82
Spurr (2020) [9] 0.82
Supervised 0.77
PeCLR (Ours) 0.81

Table 2: Comparison with related work. We adapt the
table from [9] as it is the most comprehensive comparison
with related work. *These works report unaligned results.

5. Further results on other datasets

Here we fine-tune models on HO-3D and Dexter+Object.
We compare both training solely supervised (our base-
line) with using PeCLR pre-training. To provide a better
overview, we compare with other related work. We first
investigate the results on HO-3D shown in Tab. 1. The
baseline network is solely trained supervised on HO-3D,
whereas PeCLR is pre-trained self-supervised on FH and
YT3D and fine-tuned supervised on HO-3D. The results
are as reported by the online submission system. We re-
port the aligned and unaligned 3D EPE / AUC. On this
dataset, we see that our baseline already outperforms related
work. PeCLR is capable of pushing the performance even
further, yielding an improvement of 18% in aligned EPE.
Similar improvements can be found for all other metrics.
This demonstrates that PeCLR yields improvement even if
the pre-training dataset contains a domain shift with respect
to the target dataset.

For Dexter+Object, we use the same network as in Sec.
4.5 in the main paper. Tab. 2 reports the aligned AUC for
Dexter+Object dataset. Note that this dataset consists of
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Figure 3: Percentage of improvement for rotational equiv-
ariance. Each point denotes the improvement of PeCLR
over SimCLR for rotational equivariance, as measured
for 2D EPE. We see that across all sampled rotations,
PeCLR leads to increased equivariance on both the dataset
the model was fine-tuned on (FH) as well as pre-trained
(YT3D).

completely unseen data. We adapt the table from [9] as
it compares a wide range of works. We observe that the
baseline network struggles to reach good performance (0.77
AUC). However, PeCLR yields improvements of 4.9%, al-
most reaching parity with state-of-the-art (0.81 AUC). This
experiment indicates that PeCLR results in good cross-
domain performance.

6. Inspecting equivariance of PeCLR and Sim-
CLR

We investigate the equivariance of the resulting model
after fine-tuning for both PeCLR and SimCLR. We quantify
equivariance by measuring deviations from Eq. 2. Specifi-
cally, we report:

Lequiv(I
n) = ||tgi f(I

n)− f(tgi (I
n))||2. (5)

We investigate the rotation and translation augmentations
since they are affected by PeCLR. To quantify the difference
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(b) YouTube3DHands

Figure 4: Percentage of improvement for translational equivariance. Each point denotes the improvement of PeCLR over
SimCLR for translational equivariance, as measured for 2D EPE. We see that across all sampled translation on the grid,
PeCLR leads to increased equivariance on both the dataset the model was fine-tuned on (FH, Fig. 4a) as well as pre-trained
(YT3D, Fig. 4b).

Figure 5: Qualitative samples of SimCLR and PeCLR pre-
trained models on YouTube3DHands.

in performance between PeCLR and SimCLR, we visualize
the following measure of improvement:

Limprov(I
n) =

LSimCLR
equiv (In)−LPeCLR

equiv (In)

LSimCLR
equiv (In)

(6)

This measure allows quantifying improvement relative to
the scale of the error. For a given augmentation, we
sample points equidistantly on their respective parameter

ranges. For rotation we sample points equidistantly in the
range [−80◦, 80◦]. For translation, we set the ranges at
[−25, 25]2. Each point is evaluated on the whole dataset.
Here we evaluate on both YT3D and FH. Both models have
been pre-trained self-supervised on both datasets and ine-
tuned supervised on FH. We first visualize the results for
the rotation augmentation as shown in Fig. 3. For both
datasets, we see that Limprov is positive for the entire range
tested, indicating that PeCLR performs better on equivari-
ance tasks. The amount of improvement declines as we en-
ter more extreme ranges. The same trend can be observe for
both the dataset the models have been fine-tuned on (FH)
as well as only pre-trained (YT3D). These results are sup-
ported by qualitative analysis, as can be seen in Fig. 5.

Fig. 4 shows the effect of translation on equivariance
for both models. Similar to rotation, we observe over-
all improvement of PeCLR over SimCLR across all ranges
sampled, as characterized by Limprov when more extreme
translation is applied.

This experiment demonstrates that the equivariance
property holds even after fine-tuning the network.

7. Qualitative results
Here we demonstrate further qualitative results on FH

and YT3D. Furthermore, Fig. 6 and Fig. 7 visualize pre-
dictions on HO-3D and D+O from the models described in
Sec. 5.



Target Baseline BaselinePeCLR PeCLR

Figure 6: Predictions are shown on the test sets of YT3D (left) and FH (right) without (Baseline) or with PeCLR pre-training.
Note that the ground truth of the test set is not publicly available for FH, thus we only visualize the predictions.



Target Baseline BaselinePeCLR PeCLR

Figure 7: Predictions are shown on the test sets of D+O (left) and HO3D (right) without (Baseline) or with PeCLR pre-
training. Note that the ground truth of the test set is not publicly available for HO3D, thus we only visualize the predictions.
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