
Refining activation downsampling with SoftPool – Supplementary Material

Original Max pool Avg pool SoftPool (ours)

Figure S1: High resolution pooled images. Original images are of size 1200×1200. The downsampled images were created
with ×3 pooling operations. To match the sizes of the original images and make the downsampling result more visible, we
used inter area interpolation to resize the pooled images. This does not create a smoothing effect between neighboring pixels
that are interpolated but rather populates new pixels based on the area relation.

S1. Detail preservation

We discussed and demonstrated the feature preservation
capabilities of SoftPool in Section 3.3. Here, we provide
high-resolution images from examples in Figure 3 of the
paper, in order to demonstrate clearer the effects of each
pooling method. As it can be seen in Figure S1, SoftPool
can better capture detail in high-contrasting areas. Evidence
of this can be seen in the top image where the dragon fruit
seeds are not always preserved in the down-sampled im-
ages. For max pooling, most of the seeds are lost. This
also applies to a certain extent to average pooling. By se-
lecting the average within a region, features with high con-
trast are smoothed over, which reduces their effect signifi-
cantly. In contrast, SoftPool preserves such regions in the

sub-sampled outputs. By including part of the low-intensity
regions in the output while weighting the high-intensity re-
gions more, it can preserve the little-contrasting pixels. A
similar pattern can also be seen with low-contrasting re-
gions such as the bird’s eye in the second row where, again,
max pooling will highlight the high intensity features in the
output while the downsampled output becomes less similar
to that of the original image. Average pooling would in-
stead make low-contrast features much more difficult to be
recognized. SoftPool provides a balance between the two
methods by weighting each part of the region respectfully
to its intensity value.

1

Target Original SoftPool-enabled

Figure S2: Neuron activation maximization for Incep-
tionV3 with original and SoftPool pooling layers. We
maximized the top-10 neurons [4, 13] of the final block
(Mixed7c) in InceptionV3 [16]. Target top-10 neuron
combinations for each row were selected for ImageNet1K
classes “broccoli”, “nails”, “artichoke” and “corn”.

S2. Model feature visualization

Learned feature interpretability aims at understanding
the features that networks associate with each class. One
technique is activation maximization [4] which creates a
synthetic image by maximizing the activations relating to
a specific neuron. Neurons could correspond to a specific
class [12] or features within the feature extractor [2].

To test the representation capabilities of networks with
SoftPool, we use InceptionV3 [16] as a backbone model
and visualize the top-10 most informative features. To train,
we initialize an image with random noise, which we use as
input for each of the two tested networks. During the train-
ing process, the image is optimized with the maximization
of the activations of the top-10 kernels in the final Incep-
tionV3 block (Mixed7c) as objective function. The top-10

kernels are selected based on the highest average activations
across all class examples. To eliminate additional noise, we
use a mask-based approach similar to Wei et al. [18]. How-
ever, in our setting, the mask is responsible for reducing the
size of the gradient vectors for regions that are further away
from the image center.

We used input images of size 512 × 512 in order to get
higher-definition features. We use an SGD optimizer with
an initial learning rate of 0.1 with a linear decrease to 0.01
over 2,000 total iterations. We use a weight decay of 1e-
6. The weights for both models were initialized from those
shown in Table 6 of the paper.

We show the outputs in Figure S2 for four ImageNet1K
classes: “broccoli”, “nails”, “artichoke” and “corn”. We in-
clude in the left column the ImageNet1K images with the
highest activations to provide representative examples. The
majority of the features are fairly similar between the two
models. Since SoftPool does not change the overall archi-
tecture nor the parameters, a high degree of similarity is ex-
pected. However, in cases such as the heads of the nails, we
do notice a better definition of the objects. We also notice
for the artichoke class that the structure of the petals and the
thorns are more easy to distinguish from the network with
SoftPool layers compared to the network with the original
pooling layers. Although the differences remain small, by
only changing the downsampling method used by the net-
work, it can affect the robustness and improve the feature
interpretability to a degree.

S3. Spatio-temporal volume pooling
Pooling operations in time-inclusive volumes (videos)

face the additional challenge of encoding time in the output.
One large problem is between-frame motion as it can signif-
icantly impact the representation of spatial features within
frames in the sub-sampled volume.

We show in Figure S3 with four different examples the
effects of spatio-temporal pooling with average pooling,
max-pool, and SoftPool operations. As none of the methods
is tailored towards completely alleviating the effects of en-
coded motion in the pooled output, they are visible in edges
and regions where cross-frame motion exists. However, dif-
ferences between the three methods become apparent.

We demonstrate part of these differences in Figure S3(e).
Where we include two cases of zoomed-in frame regions
that show some variance based on the pooling method used.
In the top one, gaps in the wooden planks of the floor
are significantly less distinguishable within the max-pooled
frame. Consequently, in the average pooled frame region,
the nails are not visible at all anymore. This effect is in
line with our observations for image-based downsampling
of high-contrast and low-contrast regions. In contrast, Soft-
Pool preserves features in both cases, which allows for the
extraction of representative features after pooling.

Parkour

Running

Dodgeball

Table tennis

a. Original b. Avg. pool (3D) c. Max-pool (3D) d. SoftPool (3D)

e. Zoomed-in frame regions

Figure S3: Spatio-temporally downsampled videos. Sub-sampling over spatio-temporal volumes compared to original
videos (a), and downsampled with average pooling (b), maximum pooling (c) and our proposed SoftPool (d). Two zoomed-
in frame regions appear in (e).

Source video original with SoftPool Source video original with SoftPool

Figure S4: Spatio-temporal saliency region visualizations for r3d-50 with and without SoftPool. Class Feature Pyramids
[14, 15] were used to generate the regional activations in the final conv layer of r3d-50.

S4. Time-inclusive salient regions

To better understand the use of SoftPool in 3D-CNNs,
we study the spatio-temporal regions that the network finds
more informative. Similar to the activation maximization
visualizations for images, we use a fixed network structure
as a backbone and only study the variations produced by
replacing the original pooling operations with SoftPool. For
the visualizations in Figure S4, we use the r3d-50 network
from Table 5 in the paper. The examples are sampled from
the Kinetics-700 dataset from the classes “building lego”
and “archery”.

Based on the examples presented in Figure S4, there are
no significant differences in the salient regions. However,
in multi-object scenes such as for the “building lego” class,

the regional focus of the SoftPool network is shown to be
a bit more distinct towards the region where there is a clear
definition of the action performed (i.e. the hand with the
lego brick). The case of “archery” exhibit small amounts
of variations, with both either focusing on the main actor
within the video.

S5. Embedding spaces visualizations

We provide t-SNE [8] visualizations of feature embed-
dings from an InceptionV3 model with original pooling op-
erations and their counterparts with all pooling operations
replaced by SoftPool. We use the averaged feature vectors
of the final block in InceptionV3 (Mixed7c) with a reduced
dimensionality of 50 channels produced by PCA [6] and

then perform t-SNE. We further perform k-means clustering
[7] to better represent the different sub-clusters within the
embedding space. In well-defined feature spaces, images in
clusters that are closer together should be more similar.

The visualizations in Figures S5-S7 show distinct em-
beddings for the two networks. While structurally both
model yield similar embeddings, for some classes the dif-
ferences are more apparent. For example, class “jack-o-
lantern” (Figure S6) and “sax” (Figure S7) show more com-
pact representations when SoftPool is used.

S6. Additional runs on ImageNet1K
To test the improvements of SoftPool based on pooling

layer replacements, supplementary to Table 2, we perform
multiple runs over different seeds for four networks. For
each of the training seeds, we train both an original net-
work and a network with pooling layers replaced by Soft-
Pool to ensure a fair comparison. As shown in Table S1,
networks with SoftPool achieve higher top-1 classification
accuracy rates. The improvements of ResNet18 range be-
tween 1.31-1.57%, 1.07-1.41% for ResNet34, 1.15-1.27%
for ResNet50 and 1.46-1.75% for InceptionV1. This
demonstrates that the choice in seeding plays minimal to
no effect on the improvements when replacing the original
network’s pooling layers with SoftPool.

Model / Run Original SoftPool
1 2 3 (best) 1 2 3 (best)

ResNet18 69.61 69.73 69.69 69.76 71.18 71.04 71.25 71.27
ResNet34 73.26 73.11 73.24 73.30 74.66 74.52 74.31 74.67
ResNet50 76.01 75.97 76.04 76.15 77.26 77.24 77.19 77.35
InceptionV1 69.63 69.57 69.46 69.78 71.09 71.32 71.15 71.43

Table S1: Top-1 Accuracy rates over runs between the
original networks and the same networks with SoftPool on
ImageNet1K.

S7. Error rates and statistical significance
We further evaluate the statistical significance of the val-

idation accuracy rates achieved in Table 2 in the context
of the classification performance between the original mod-
els and models with pooling layers replaced by SoftPool.
We perform a McNemar’s test [3, 9], which is based on a
null hypothesis (H0) corresponding to accuracy homogene-
ity between the two models. It is calculated based on a
contingency table holding the number of correct or incor-
rect class prediction instances with respect to each model.
The tests studies the number of disagreements in the pre-
dictions between the two models. The Chi-Square statistic
(χ2) is then calculated based on the number of model i cor-
rect predictions against model j incorrect predictions (nij)
and model j correct against model i incorrect predictions
(nji). This is expressed as:

χ2 =
(|nij − nji| − 1)2

nij + nji
(S1)

We note that the null hypothesis (H0) can be re-
jected with different significance levels based on the Chi-
Square distribution table [10]. As the statistic is cal-
culated with a single degree of freedom, χ2 values of
{3.84, 5.02, 6.63} correspond to equivalent probabilities of
{95%, 97.5%, 99.0%} that the two methods indeed differ.

Prediction distributions of each model pair are presented
in Table S2 and the resulting χ2 statistics and ρ homogene-
ity probabilities are presented in Table 4 in the main text.
Based on the very low homogeneity probability � 0.01%
[1, 5, 11], the differences between the original networks and
the networks that have been re-trained with SoftPool cannot
be attributed to statistical errors.

S8. Implementation Details

Range definitions. The exponential weighting of activa-
tions can correspond to the produced values being smaller
than the type’s (16, 32, 64-bit) precision level lower thresh-
old. This can either result in a computational underflow
or in a zero-valued dividend. For this reason, we include
additional checks that each produced exponentially scaled
activation eai and their resulting weight mask wi, based on
which their values (x) are transformed, to x = max(0, x).
The sum of the weights is constrained similarly, based on
x = max(xmin, x), where xmin is the lowest limit based
on type chosen to ensure non-zero dividend. We note that
these checks do need to address changes in the activation
functions used. The current tested networks use ReLU ac-
tivations which have lower bounds of zero. When consid-
ering other non-zero or negative-valued lower bound func-
tions, the transformations need to be adjusted accordingly.

Computational description. As our implementation is
native to CUDA-enabled devices, we are able to achieve
inference times close to those of native methods such as
average and maximum pooling. However, the paralleliza-
tion capabilities of SoftPool allow for running times sim-
ilar to those of average pooling with O(1). This is based
on the fact that operations can be performed through a ma-
trix over the kernel region. This is beneficial for processes
that have parallelization as a backbone (CUDA). In con-
trast, max pooling has complexity of at least O(n), as the
selection of the maximum value within the region can only
be performed through the sequential consideration of each
pixel within the region. In terms of the number of FLOPs,
SoftPool is on par with other pooling methods such as av-
erage or max pooling because of tiling and CUDA’s in-
ternal optimization during compiling. This can be traced
to Valkov and Demmel’s [17] comment that CUDA’s C
produces peak FLOP performance for Nvidia cards only

Original Total
Correct Incorrect

SoftPool Correct 31838 3795 35633
Incorrect 3011 11356 14367

Total 34849 15151 50000

(a) ResNet18

Original Total
Correct Incorrect

SoftPool Correct 34090 3246 37336
Incorrect 2940 9724 12664

Total 37030 12970 50000

(b) ResNet34
Original Total

Correct Incorrect

SoftPool Correct 35472 3203 38675
Incorrect 2603 8722 11325

Total 38075 11925 50000

(c) ResNet50

Original Total
Correct Incorrect

SoftPool Correct 36553 2609 39162
Incorrect 2272 8566 10838

Total 38825 11175 50000

(d) ResNet101
Original Total

Correct Incorrect

SoftPool Correct 37247 2373 39620
Incorrect 1908 8472 10380

Total 39155 10845 50000

(e) ResNet152

Original Total
Correct Incorrect

SoftPool Correct 34097 3836 37933
Incorrect 2253 9814 12067

Total 36350 13650 50000

(f) DenseNet121
Original Total

Correct Incorrect

SoftPool Correct 35160 4237 39397
Incorrect 3631 6972 10603

Total 38791 11209 50000

(g) DenseNet161

Original Total
Correct Incorrect

SoftPool Correct 35074 3407 38481
Incorrect 2988 8531 11519

Total 38062 11938 50000

(h) DenseNet169
Original Total

Correct Incorrect

SoftPool Correct 36628 2618 39246
Incorrect 2153 8601 10754

Total 38781 11219 50000

(i) ResNeXt50

Original Total
Correct Incorrect

SoftPool Correct 38633 2587 41220
Incorrect 1005 7775 8780

Total 39638 10362 50000

(j) ResNeXt101
Original Total

Correct Incorrect

SoftPool Correct 36638 3113 39751
Incorrect 2636 7613 10249

Total 38781 10726 50000

(k) wide-ResNet50

Original Total
Correct Incorrect

SoftPool Correct 31826 3897 35723
Incorrect 3037 11240 14277

Total 34863 15137 50000

(l) InceptionV1
Original Total

Correct Incorrect

SoftPool Correct 36341 3029 14874
Incorrect 2370 8260 10630

Total 38711 11289 50000

(m) InceptionV3

Table S2: Error summaries of original models and models with pooling replaced with SoftPool.

assuming multiply-and-accumulate (MACCs) operations,
with only MACCs contributing to CUDA’s FLOP count.

Testing environment. All of our tests were done with
half floating point precision (float16) instead of single-point
(float32) for better memory utilization during the model
training phase. The batch sizes are split equally with 64
images per GPU. Our testing environment consists of an
AMD Threadripper 2950X with 2400MHz RAM frequency
and four Nvidia 2080 TIs.

References
[1] Robert M Craparo. Significance level. Encyclopedia of mea-

surement and statistics, 3:889–891, 2007. 5
[2] Alexey Dosovitskiy and Thomas Brox. Inverting visual rep-

resentations with convolutional networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4829–4837. IEEE, 2016. 2

[3] Allen L Edwards. Note on the “correction for continuity” in
testing the significance of the difference between correlated
proportions. Psychometrika, 13(3):185–187, 1948. 5

[4] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal
Vincent. Visualizing higher-layer features of a deep network.
University of Montreal, 1341(3):1, 2009. 2

[5] Ronald Aylmer Fisher. Statistical methods for research work-
ers. In Breakthroughs in statistics, pages 66–70. Springer,
1992. 5

[6] IT Jolliffe. Principal component analysis. Technometrics,
45(3):276, 2003. 4

[7] Stuart Lloyd. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2):129–137, 1982. 5

[8] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 4

[9] Quinn McNemar. Note on the sampling error of the differ-
ence between correlated proportions or percentages. Psy-
chometrika, 12(2):153–157, 1947. 5

[10] Yoni Nazarathy. Chi-square distribution ta-
ble. https://people.smp.uq.edu.au/
YoniNazarathy/stat_models_B_course_
spring_07/distributions/chisqtab.pdf.
5

[11] Jerzy Neyman. Outline of a theory of statistical estimation
based on the classical theory of probability. Philosophical
Transactions of the Royal Society of London. Series A, Math-
ematical and Physical Sciences, 236(767):333–380, 1937. 5

[12] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013. 2

[13] Alexandros Stergiou. The mind’s eye: Visualizing class-
agnostic features of cnns. arXiv preprint arXiv:2101.12447,
2021. 2

[14] Alexandros Stergiou, Georgios Kapidis, Grigorios Kalli-
atakis, Christos Chrysoulas, Ronald Poppe, and Remco
Veltkamp. Class feature pyramids for video explanation. In

International Conference on Computer Vision Workshop (IC-
CVW), pages 4255–4264. IEEE, 2019. 4

[15] Alexandros Stergiou, Georgios Kapidis, Grigorios Kalli-
atakis, Christos Chrysoulas, Remco Veltkamp, and Ronald
Poppe. Saliency tubes: Visual explanations for spatio-
temporal convolutions. In International Conference on Im-
age Processing (ICIP), pages 1830–1834. IEEE, 2019. 4

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–2826.
IEEE, 2016. 2

[17] Vasily Volkov and James W Demmel. Benchmarking gpus to
tune dense linear algebra. In Conference on Supercomputing.
IEEE, 2008. 5

[18] Donglai Wei, Bolei Zhou, Antonio Torrabla, and William
Freeman. Understanding intra-class knowledge inside CNN.
arXiv preprint arXiv:1507.02379, 2015. 2

https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf

a. Original b. SoftPool

Figure S5: t-SNE feature embeddings for InceptionV3 with and without SoftPool. ImageNet1K classes “bald eagle”, “sea
anemone” and “ladybug”. Cluster centers are found with k-means to better visualize the feature space. Images displayed are
the closest examples for each cluster center.

a. Original b. SoftPool

Figure S6: t-SNE feature embeddings for InceptionV3 with and without SoftPool. ImageNet1K classes “combination
lock”, “gas pump” and “jack-o-lantern”. Cluster centers are found with k-means to better visualize the feature space. Images
displayed are the closest examples for each cluster center.

a. Original b. SoftPool

Figure S7: t-SNE feature embeddings for InceptionV3 with and without SoftPool. ImageNet1K classes “sax” and “zuc-
chini”. Cluster centers are found with k-means to better visualize the feature space. Images displayed are the closest examples
for each cluster center.

