Supplementary Material for
Relating Adversarially Robust Generalization to Flat Minima

David Stutz!

Matthias Hein?

Bernt Schiele’

'Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken
ZUniversity of Tiibingen, Tiibingen

{david.stutz, schiele}@mpi-inf.mpg.de, matthias.hein@uni-tuebingen.de

A. Overview

In the main paper, we empirically studied the connec-
tion between adversarial robustness (in terms of the robust
loss RLoss, i.e., the cross-entropy loss on adversarial exam-
ples) and flatness of the RLoss landscape w.r.t. changes in
the weight space. In this context, we also consider the phe-
nomenon of robust overfitting [75], i.e., that robustness on
training examples increases consistently throughout train-
ing while robustness on test examples eventually decreases.
Based on average- and worst-case metrics of flatness in
RLoss, which we ensure to be scale-invariant, we show a
clear relationship between adversarial robustness and
flatness. This takes into account many popular variants of
adversarial training (AT), i.e., training on adversarial ex-
amples: TRADES [102], MART [92], AT-AWP [96] AT
with self-supervision [40] or additional unlabeled examples
[11]. All of them improve adversarial robustness and flat-
ness. Vice versa, approaches known to improve flatness,
e.g., Entropy-SGD [12], weight clipping [85] or weight av-
eraging [33] also improve adversarial robustness. Finally,
we found that even simple regularization schemes, e.g., Au-
toAugment [2 1], weight decay or label noise, also improve
robustness by finding flatter minima.

A.1. Contents
This supplementary material is organized as follows:
e Sec. B: additional discussion of related work.

e Sec. C: details on RLoss landscape visualization and
comparison to [54] (cf. Fig. A and B).

e Sec. D: details on how to compute our average-
and worst-case flatness measures, including ablation
studies in Sec. D.1 (cf. Fig. C, D and E).

e Sec. E: discussion of scale-invariance of our visual-
ization and flatness measures (cf. Fig. F and Tab. A).

e Sec. F: specifics on our experimental setup (training
and evaluation details).

e Sec. G: discussion of all individual methods, includ-
ing ablation regarding hyper-parameters in Sec. G.I
(cf. Fig. G and H) and flatness in Sec. G.2 (cf. Fig. |
and J). Training curves for all methods in Fig. K.

e Sec. H: all results in tabular form (Tab. B, C, E, D)

B. Related Work

Adversarial Examples and Defenses: Adversarial ex-
amples, first reported in [89], can be generated using a
wide-range of white-box attacks [89, 31, 50, 68, 63, 59, 9,

, 57], with full access to the network, or black-box at-
tacks [13, 6, 87, 41, 77, 64], with limited access to model
queries. Besides certified and provable defenses [16, 98,

s s , 94, 32, 30, 61, 81, 53, 17], adversarial train-
ing (AT) has become the de-facto standard, as discussed
in the main paper. However, there are also many detec-
tion/rejection approaches [34, 29, 55, 58, 2, 60], so-called
manifold-projection methods [42, 70, 78, 79], several meth-
ods based on pre-processing, quantization and/or dimen-
sionality reduction [7, 71, 5], methods based on random-
ness, regularization or adapted architectures [99, 5, 65, 80,

,45,76,47,52,97] or ensemble methods [56, 84, 36,91],
to name a few directions. However, often these defenses can
be broken by considering adaptive attacks [8, 10, 3, 4].

Weight Robustness: Flatness, w.r.t. the clean or robust
loss surface, is also related to robustness in the weights.
However, only few works explicitly study this “weight ro-
bustness”: [93] considers robustness w.r.t. Lo, weight per-
turbations, while [14] studies Gaussian noise on weights.
[74, 37], in contrast, adversarially flip bits in (quantized)
weights to reduce performance. Recently, [85] shows that
robustness in weights can improve energy efficiency of neu-
ral network accelerators (i.e., specialized hardware for in-
ference). This type of weight robustness is also relevant
for some backdooring attacks that explicitly manipulate
weights [46, 27]. Fault tolerance is also a related concept,
as it often involved changes in units or weights. It has been
studied in early works [06, 15, 22], obtaining fault tolerance

Direction of Largest Eigenvalue

100

AT (baseline)

) 80 1
Scaled x2

Batch size 8
pme= Adam

pmees \iSH

60 1

RLoss

0.0 0.2 0.4 0.6 0.8 1.0

py-S

=== TRADES

pme== NMART
AT-AWP

0.0 _()‘-2 (Jf-l Uf(i ()18 1.0

Step
Figure A: Visualization in “Hessian” Direction: RLoss
visualized in the direction of the largest Hessian eigenvalue
(i.e., the corresponding eigenvector). The eigenvalues quan-
tify the “rate of change” along the corresponding eigenvec-
tor. Thus, the largest eigenvalue represents a worst-case di-
rection in weight space. Clearly, RLoss increases signifi-
cantly in these directions.

using approaches similar to adversarial training NNs using
approaches similar to adversarial training. However, there
are also more recent works, e.g., weight dropping regular-
ization [73] or GAN-based training [26]. We refer to [90]
for a comprehensive survey.

C. Visualization Details and Discussion

Visualization Details: For the plots in the main paper,
we compute the mean RLoss across 10 random, normalized
directions; for adversarial directions, we plot max RLoss
over 10 adversarial directions. After normalization, we re-
scale the weight directions to have length 0.5 for random
directions and 0.025 for adversarial directions. This essen-
tially “zooms in” and is particularly important when visu-
alizing along adversarial weight directions. In all cases, we
estimate RLoss on one batch of 128 test examples for 51
evenly spaced step sizes in [—1,1]. We found that using
more test examples does not change the RLoss landscape
significantly. Fig. A shows additional visualizations along
the direction of the largest Hessian eigenvalue (also using
per-layer normalization, multiplied by 0.5).

Discussion of [54]: Originally, [54] uses a per-filter nor-
malization instead of our per-layer normalization. Specifi-
cally, this means

, 0 ,
o)) = ”(Vli,)”Hw(l’l)HQ for layer [, filter i, (1)
plbe 2

Average RLoss in Random Directions
5.0

AT (baseline)
p=e=Scaled x0.5
Scaled x2
Batch size 8
Adam
MiSH

 —
 —

Average RLoss

-1.0 —0.5 0.0 0.5 1.0

AT (baseline)
== Label smoothing

Self-supervision
Entropy-SGD
TRADES
MART
AT-AWP

P

Average RLoss

2.5

.T] .] |
~1.0 —0.5 0.0 0.5 Lo
Step

Figure B: Filter-Wise Normalization: Compared to the
RLoss landscape visualizations in the main paper, using
per-layer normalization in Eq. (2), we follow [54] and use
filter-wise normalization in Eq. (1). Again, we plot mean
RLoss across 10 random directions. However, this does
not change results significantly, flatness remains difficult to
judge and compare in an objective way. Filter-wise normal-
ization, however, “looks” generally flatter.

instead of our normalization outlined in the main paper:

RO

- Hy(l)||2Hw(l)H2

for layer (. 2)

Furthermore, [54] does not consider changes in the biases or
batch normalization parameters. Instead, we also normalize
the biases as above and take them into account for visual-
ization (but not the batch normalization parameters). More
importantly, [54] considers only (clean) Loss, while we fo-
cus on RLoss. Compared to the plots from the main pa-
per, Fig. B shows that the difference between filter-wise and
layer-wise normalization has little impact in visually judg-
ing flatness. Generally, filter-wise normalization makes the
RLoss landscape “look” flatter. However, this is mainly be-
cause the absolute step size, i.e., ||7||2, is smaller compared
to layer-wise normalization: for our AT baseline, this is (on
average) ||7||2 ~ 33.13 for layer-wise and ||7|2 ~ 21.49
for filter-wise normalization.

D. Computing Flatness in RLoss

Average-Case Flatness: The average-case flatness mea-
sure in RLoss is defined as:

Ey[ugﬁl:)ée L(f(x+d, w+v),y)]

3
— max L(f(z+d;w),y)
ll9]loc <e
where E, denotes the expectation over random weight
perturbations v € Be(w), L is the cross-entropy loss

and max)| _<e £(f(240; w), y) represents the robust loss

Smaller ¢{-Balls for Flatness

Flatness as in Main Paper

Larger ¢-Balls for Flatness

Epoch

14 Train RLoss e 4 ,J—/“ Train Rioss
{ : o) | J== Test RLoss
alue (-10°) ue (-109) 2011 est ALoss 5N %
»n] @ - - M ,
2 3 atness Loss ¢ 7 34 Avg flatness Loss ; 2
] % = Worst flatness Los§ g SS
= s 54 = == Avg flatness RLoss = e ve flatmees m_m: ~
= Worst flatness RLgss, = 2 Worst flatness RLqss = A\\'uhm fatness RI‘ Les
~ 21|+ Farly Stopping & ~~ 2 [-++_Farly Stopping & — . e | /
) g) -+ Early Stopping 7\
Z I t 2 el 2 107 Av
S 1 | ™| 3
~ : o ’ =
' 5
| | :
! | W
0 — 0 T + : T 0 - : T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Epoch (Normalized)

Epoch

Figure C: Flatness Throughout Training, Ablation: We plot train and test RLoss, maximum Hessian eigenvalue Ap,x,
average-/worst-case flatness of (clean) Loss as well as average-/worst-case flatness on RLoss. We consider £=0.25/§=0.001
(left), €=0.5/6=0.003 (middle and main paper), and £=0.75/6=0.005 for average-/worst-case flatness, respectively. If the
neighborhood b, (w) is chosen too small (left), increases/changes in flatness during robust overfitting are difficult to measure
due to fluctuations throughout training. Chosen too large (right), in contrast, worst-case flatness (both in Loss and RLoss)
quickly reaches unreasonably high loss values. This becomes problematic when comparing across models.

(RLoss). The first term is computed by randomly sampling
10 weight perturbations from

Be(w) = {w+v: [vV]s < &Jw® |2V layers 1}, (4)

For each weight perturbation v, the robust loss, defined as
max| 5| <e L(f (x40, w+v),y), is estimated using PGD
with 20 iterations (¢ = 8/255, learning rate 0.007 and signed
gradient). This is done per-batch (of size 128) for the first
1000 test examples. Alternatively, the weights perturbations
v could also be fixed across batches (i.e., 10 samples in total
for [1000/128] batches). However, this is not possible for our
worst-case flatness measure, as discussed next. Thus, for
comparability, we sample random weight perturbations for
each batch individually. The second term is computed using
PGD-20 with 10 restarts, choosing the worst-case adversar-
ial examples per test example (i.e., maximizing RLoss).
Sampling in Be(w) is accomplished by sampling indi-
vidually per layer. That is, for each layer [, we compute
¢ := ¢ ||lw®|, given the original weights w. Then, a ran-
dom vector vV with [|[v(||y < ¢ is sampled. This is done
for each layer, handling weights and biases as separate lay-
ers, but ignoring batch normalization [43] parameters.
Worst-Case Flatness: Worst-case flatness is defined as:

max L(f(z+6, w+v),
hax (f():y)

— max L(f(z+5;w),y).
nax (f():v)

MaXy e Be (w)

®)

Here, the expectation over v in Eq. (3) is replaced by a max-
imum over v € Bg(w), considering smaller £. In practice,
the first term in Eq. (5) is computed by jointly optimizing
over weight perturbation v and input perturbation(s) § on a
per-batch basis (of size B = 128). This means, after ran-
dom initialization of &, Vb = 1,...,B, and v € Be(w),

each iteration computes and applies updates

B
Ay =V, Y L(flwp+ 0w +v),m) (6
b=1

B
As, = Vs, Y L(f(xp+ dp;w+v),p) (7
b=1

before projecting 05 and v onto the constraints ||0p]/cc < €
and [[vW]]y < €|lw®P|,. The latter projection is applied in
a per-layer basis, similar to sampling as described above.
For the adversarial weight perturbation v, we use learning
rate 0.001, after normalizing the update A, per-layer as in
Eq. (2). We run 20 iterations with 10 restarts for each batch.

Flatness of Clean Loss Landscape: We can also
consider both Eq. (3) and Eq. (5) on the clean (cross-
entropy) loss (“Loss”™), i.e., L(f(xz,w+v),y) instead of
max| 5| <e L(f(z+0, w+v),y). We note that RLoss is
an upper bound of (clean) Loss. Thus, flatness in RLoss
and Loss are connected. However, Pearson correlation be-
tween RLoss and average-case flatness in (clean) Loss is
only 0.27, compared to 0.85 for average-case flatness in
RLoss. This indicates that correctly measuring flatness in
RLoss is crucial to empirically establish a relationship be-
tween robustness and flatness.

D.1. Ablation for Flatness Measures

Flatness Throughout Training: Fig. C shows average-
and worst-case flatness on both clean as well as robust loss
(Loss and RLoss) throughout training of our AT baseline.
We consider different sizes of the neighborhood Bg(w)
for computing our flatness measures: £=0.25/6=0.001
(left), £=0.5/6=0.003 (middle, as in main paper), and
£=0.75/£=0.005 for average-/worst-case flatness, respec-
tively. While average-case flatness of clean Loss does not
mirror robust overfitting very well, its worst-case pendant
increases during overfitting, even though RLoss is not taken

B Std of Average-Case Flatness in RLoss Flatness on Training Worst-Case Flatness in Loss, § = 0.003 Early Stopping for All Models S
® 0 . ¢ . ¢ o) °
3 R 0 &8z oo s
® 0 [0Q ¢ ¢ ° <] ol [0
® o] o0@°| o o . ¢ ° |e e ¢ 0
o ° = = ~
o 8 8 8 2
3 b g g Sao
7 Q % ° ° P
- <>’ 0 3 o’ 32 0 k]
. o 8 z Ol z Lo | E
R - . 3
NisH ogd © %0 © | o |e
S @ % ° L4 °
re L BEY: |1 S)
o ;
0 Ol¢ ¥ ¢
0 09)

00 03 04 [06 2 10 35 40 000 0

Std of Average-Case Flatness in RLoss Average-Case Flatness in RLoss Worst-Case Flatness in (Clean) Loss 4 Flatness in RLoss

Figure D: Left: Standard Deviation of Average-Case Flatness: We plot RLoss (y-axis) against the standard deviation (std)
in our average-case flatness measure (x-axis). Note that the standard-deviation is due to the random weight perturbations
v in Eq. (3). Interestingly, more robust methods are not only flatter, but our average-case flatness measure also has lower
standard deviation. Middle Left: Average-Case Flatness of Train RLoss: 7est RLoss plotted against our average-case
flatness measure as computed on training examples. Even on the training set, flatness is predictive of robust generalization,
i.e., adversarial robustness on the test set. The relationship, however, is weaker compared to average-case flatness on test
examples. Middle Right: Worst-Case Flatness in (Clean) Loss: As worst-case flatness in the clean Loss landscape also
mirrors robust overfitting in Fig. C, we plot RLoss against worst-case flatness in Loss. Even though flatness is measured
considering clean Loss, many methods improving robustness (i.e., lower RLoss) exhibit surprisingly good flatness. Right:
Early Stopping for all Models: RLoss vs. average-case flatness for all models where early stopping improves adversarial

robustness. For example, this is not the case for AutoAugment or AT with unlabeled examples. Across all models, early

stopping improves both robustness and flatness. For clarity we provide a zoomed-in plot for the lower left corner.

into account. Furthermore, if the neighborhood B¢ (w) is
chosen too small, the flatness measures are not sensitive
enough to be discriminative (cf. left). Fig. C also shows
that, throughout training of one model, the largest Hessian
eigenvalue mirrors robust overfitting. Overall, this means
that early stopping essentially improves adversarial robust-
ness by finding flatter minima. This is confirmed in Fig. D
(right), showing that early stopping consistently improves
robustness and flatness.

Standard Deviation in Average-Case Flatness: In
Fig. D (left), the x-axis plots the standard deviation in our
average-case flatness measure (in RLoss). Note that the
standard deviation originates in the random samples v used
to calculate Eq. (3). First of all, standard deviation tends to
be small (i.e., < 0.3) across almost all models. This means
that our findings in the main paper, i.e., the strong correla-
tion between flatness and RLoss, is supported by low stan-
dard deviation. More importantly, the standard deviation
reduces for particularly robust methods.

Average-Case Flatness on Training Examples: Fig. D
(middle left) shows that average-case flatness in RLoss is
also predictive for robust generalization when computed on
training examples. However, the correlation between (test)
RLoss and (train) flatness is less clear, i.e., there is a larger
“spread” across methods. Here, we use the first 1000 train-
ing examples to compute average-case flatness.

Worst-Case Flatness on Clean Loss: In Fig. C, worst-
case flatness on clean Loss also correlates with robust over-
fitting. Thus, in Fig. D (middle right), we plot RLoss against
worst-case flatness of Loss, showing that there is no clear
relationship across models. Nevertheless, many methods

improving adversarial robustness also result in flatter min-
ima in the clean loss landscape. This is sensible as RLoss
is generally an upper bound for (clean) Loss. On the other
hand, flatness in Loss is not discriminative enough to clearly
distinguish between robust and less robust models.
Ablation for B¢(w): For computing our average- and
worst-case flatness measures (in RLoss), we considered var-
ious sizes of neighborhoods in weight space, i.e. Be(w)
from Eq. (4) for different £&. Fig. E considers £ €
{0.25,0.5,0.75, 1} for average-case flatness (top) and £ €
{0.00075,0.001, 0.003,0.005} for worst-case flatness (bot-
tom). In both cases, we plot RLoss (y-axis) against flat-
ness in RLoss (y-axis), as known from the main paper.
Average-case flatness using small £ = 0.25 results in signif-
icantly smaller values, between 0 and 0.4, i.e., the increase
in RLoss in random weight directions is rather small. Still,
the relationship between adversarial robustness and flatness
is clearly visible. The same holds for larger £ € {0.75,1}.
Worst-case flatness generally gives a less clear picture re-
garding the relationship between robustness and flatness.
Additionally, for larger £ € {0.003,0.005}, variance seems
to increase such that this relationship becomes less pro-
nounced. In contrast to average-case flatness, the variance
is not induced by the 10 restarts used for Eq. (5), but caused
by training itself. Indeed, re-training our AT baseline leads
to a worst-case flatness in RLoss of 5.1, a significant reduc-
tion from 6.49 as obtained for our original baseline. Over-
all, however, the observations from the main paper can be
confirmed using different sizes of the neighborhood B¢ (w).

Average-Case Flatness in RLoss, £ = 0.5

Average-Case Flatness in RLoss, & = (.75 Average-Case Flatness in RLoss, ¢ = 1

Average-Case Flatness in RLoss, & = 0.25
¢ J 0 .]
10 go1—o 10 o, 10 8
a8s
g ¢ a, ¢ °S 0
0d®c ¢ 058 § 3) o
25 olag—is 35 e2 35 1R M
q o
S50 o S0 o
£ £ B
b . . .
7 % @
£, 2 £, IRl
= o ¢ . E & 9
. .
AN %
?Q ° ° o8 a °
o e
; Q’;&d o o .
1510 151 @ .
P 9 | ¢
03 04 o 1 2 3 1 5 ¢ 00 25 50 75 100 125 150 175 200
Average-Case Flatness in RLoss Average-Case Flatness in RLoss
rorst.Cas i o0 e . P
5 Worst-Case Flatness in RLoss, € — 0.00075 Worst-Case Flatness in RLoss, ¢ = 0.003 ‘Worst-Case Flatness in RLoss, ¢ = 0.005
g 0 . T Q [
. .
o LF-Y0) ()
I PO o e ¢ 00 L
° bne °® , ¢ o & , [o g
o o - 35 0 35 a e
° LN ° °
S . z . .
b} o3 0
4
T o . IS e &
®. ° . g, 0. °
it - EE g
e L . 0 = e . g .
N o %, o o ° °] o| N o°
i of o o @ 0 . ®
e | o d . . w R
° ° ¢ 9 e ¢ °
R TS <> . e JEU ® w0 of @
¢ [¢ [¢ ¢ 9
3 ¢ ¢ 9
0o T)) 00 01 oz 03 o1 06 0 R S 0 5 1 W 20
Worst-Case Flatness in RLoss Worst-Case Flatness in RLoss Worst-Case Flatness in RLoss Worst-Case Flatness in RLoss

Figure E: Flatness in RLoss, Ablation for B, (w): RLoss (y-axis) plotted against average-case (top) and worst-case (bottom)
flatness in RLoss (x-axis). Top: We consider £ € {0.25,0.5,0.75,1} for average-case flatness. The clear relationship
between adversarial robustness, i.e., low RLoss, and flatness shown for ¢ = 0.5 in the main paper can be reproduced for
all cases. Bottom: For worst-case flatness, we consider ¢ € {0.00075,0.001, 0.003,0.005}. When chosen too large, e.g.,
& = 0.005, however, variance seems to increase, making the relationship less clear. For small &, e.g., & = 0.00075, the
correlation between robustness and flatness is pronounced, except for a few outliers, including AT-AWP [96].

E. Scaling Networks and Scale-Invariance

Scale-Invariance: In the main paper, we presented a
simple experiment to show that our measures of flatness
in RLoss are scale-invariant: we scaled weights and bi-
ases of all convolutional layers in our adversarially trained
ResNet-18 [35] by factor s € {0.5,2}. Note that all con-
volutional layers in the ResNet are followed by batch nor-
malization layers [43]. Thus, the effect of scaling is es-
sentially “canceled out”, i.e., these convolutional layers are
scale-invariant. Thus, the prediction stays roughly constant.
Fig. F (left) shows RLoss landscape visualizations for AT
and its scaled variants in random and adversarial weight di-
rections. Clearly, scaling AT has negligible impact on the
RLoss landscape in both cases. Fig. F (right) shows that our
flatness measures remain invariant, as well. As Bg(w) in
Eq. (4) is defined per-layer (weights and biases separately)
and relative to w, the neighborhood increases alongside the
weights, rendering visualization and flatness measures in-
variant. When, for example, scaling up specific layers and
scaling down others, as discussed in [24], causes the neigh-
borhood B¢ (w) to increase or decrease in size for these par-
ticular layers. Thus, following [24], scaling up the first layer
of a two-layer ReLLU network by « and scaling down the
second layer by 1/a (keeping the output constant), has no
effect in terms of measuring flatness as the per-layer neigh-
borhood Bg(w) is scaled accordingly, as well. The Hes-

sian eigenspectrum, in contrast, scales with the models, cf.
Tab. A, and is not suited to quantify flatness.

Convexity and Flatness: Tab. A also presents the con-
vexity metric introduced in [54]: [Awinl/|\pu| With Amin/max
being largest/smallest Hessian eigenvalue. Note that the
Hessian is computed following [54] w.r.t. to the clean
(cross-entropy) loss, not taking into account adversarial ex-
amples. The intuition is that negative eigenvalues with
large absolute value correspond to non-convex directions in
weight space. If these eigenvalues are large in relation to
the positive eigenvalues, there is assumed to be significant
non-convexity “around” the found minimum. Tab. A shows
that this fraction is usually very small, as also found in [54].
However, Tab. A also shows that this convexity measure is
not clearly correlated with adversarial robustness.

F. Detailed Experimental Setup

We focus our experiments on CIFAR10 [48], consist-
ing of 50k training examples and 10k test examples of size
32 x 32 (in color) and K = 10 class labels. We use all
training examples during training, but withhold the last 500
test examples for early stopping. Evaluation is performed
on the first 1000 test examples, due to long runtimes of Au-
toAttack [19] and our flatness measures (on RLoss). Any
evaluation on the training set is performed on the first 1000
training examples (e.g., in Fig. D, middle).

Random Directions

5.
5 12,54 \

2
g \

= 100

=

& 754

g 504

Z -

10.0

Worst RLoss

s ﬁdversarial Directions

10 05 0.0 0.5 1.0 0.0 0.2
Step Step

0.4

Model Robustness Flatness
RErr | RErr | Worst | Avg | Worst
(test) (train) Loss | RLoss | RLoss
Scaled X 0.5 60.9 8.4 (-52.5) 0.86 1.36 | 6.50
AT (baseline) | 61.0 8.4 (-52.6) 0.86 1.21 6.48
Scaled x 2 61.0 8.3 (-52.7) 0.86 1.27 6.49

Figure F: Flatness and Scale-Invariance. Left: We plot average RLoss and worst RLoss along random and adversarial
directions, as discussed in Sec. C, for AT and its scaled variants, x0.5 and x2. Clearly, RLoss landscape looks nearly
identical. Right: Robustness against PGD-20 on train and test examples, as well as average- and worst-case flatness measures
on RLoss. For completeness, we also include worst-case flatness on clean Loss. All of these measures are nearly invariant to
scaling. The shown differences can be attributed to randomness in computing these measures.

As network architecture, we use ResNet-18 [35] with
batch normalization [43] and ReLU activations. Our AT
baseline (i.e., default model) is trained using SGD for 150
epochs, batch size 128, learning rate 0.05, reduced by fac-
tor 0.1 at 60, 90 and 120 epochs, weight decay 0.005 and
momentum 0.9. We save snapshots every 5 epochs to per-
form early stopping, but do not use early stopping by de-
fault. We whiten input examples by subtracting the (per-
channel) mean and dividing by standard deviation. We use
standard data augmentation, considering random flips and
cropping (by up to 4 pixels per side). By default, we use
7 iterations PGD, with learning rate 0.007, signed gradi-
ent and € = 8/255 to compute L, adversarial examples.
Note that no momentum [25] or backtracking [86] is used
for PGD. The training curves in Fig. K correspond to ro-
bustness measured using the 7-iterations PGD attack used
for training, which we also use for early stopping (with 5
random restarts).

For evaluation, we run PGD for 20 iterations and 10
random restarts, taking the worst-case adversarial exam-
ple per test example [86]. Our results considering robust
loss (RLoss) are based on PGD, while we report robust
test error (RErr) using AutoAttack [19]. Note that Au-
toAttack does notr maximize cross-entropy loss as it stops
when adversarial examples are found. Thus, it is not suit-
able to estimate RLoss. Robust test error is calculated as
the fraction of test examples that are either mis-classified
or successfully attacked. The distinction between PGD-20
and AutoAttack is important as AutoAttack does not max-
imize cross-entropy loss, resulting in an under-estimation
of RLoss, while PGD-20 generally underestimates REir.
Computation of our average- and worst-case flatness mea-
sure is detailed in Sec. D.

Everything is implemented in PyTorch [69].

G. Methods

In the following, we briefly elaborate on the individual
methods considered in our experiments.

Learning Rate Schedules: Besides our default, multi-
step learning rate schedule (learning rate 0.05, reduced

by factor 0.1 after epochs 60, 90, and 120), we followed
[67] and implemented the following learning rate sched-
ules: First, simply using a constant learning rate of 0.05.
Second, only two “late” learning rate reductions at epochs
140 and 145, as done in [72]. Third, using a cyclic learn-
ing rate, interpolating between a learning rate of 0.2 and 0
for 30 epochs per cycle, as, e.g., done in [95]. We consider
training for up to 4 cycles (= 120 epochs). These learning
rate schedules are available as part of PyTorch [69].

Label Smoothing: In [88], label smoothing is intro-
duced as regularization to improve (clean) generalization
by not enforcing one-hot labels in the cross-entropy loss.
Instead, for label y and K = 10 classes, a target distribu-
tion p € [0,1]% (subject to ", p; = 1) withp, =1 —171
(correct label) and p; /K1 for i # y (all other la-
bels) is enforced. During AT, we only apply label smooth-
ing for the weight update, not for PGD. We consider 7 €
{0.1,0.2,0.3}.

Label Noise: Instead of explicitly enforcing a
“smoothed” target distribution, we also consider injecting
label noise during training. In each batch, we sample ran-
dom labels for a fraction of 7 of the examples. Note
that the labels are sampled uniformly across all K = 10
classes. Thus, in expectation, the enforced target distribu-
tionis py, =1 — 7+ 7/K and p; = 7-7/K/K-1. As result,
this is equivalent to label smoothing with 7 = 7 — 7/k. In
contrast to label smoothing, this distribution is not enforced
explicitly in the cross-entropy loss. As above, adversar-
ial examples are computed against the true labels (without
label noise) and label noise is injected for the weight up-
date. We consider 7 € {0.1,0.2,0.3,0.4,0.5}. While label
smoothing does not further improve adversarial robustness
for 7 > 0.3, label noise proved very effective in avoiding
robust overfitting, which is why we also consider 7 = 0.4
or 0.5.

Weight Averaging: To implement weight averaging
[44], we follow [33] and keep a “running” average w of
the model’s weights throughout training, updated in each
iteration ¢ as follows:

o) = oY + (1 - 71)w®

®)

[Amin

Model (RErr against AutoAttack [20]) ‘ RErr | ‘ Amax]
AT (baseline) 62.8 | 1990 | 0.088
Scaled x0.5 62.8 | 7936 | 0.088
Scaled x 2 62.8 | 505 | 0.088
Batch size 8 582 [3132] 0.027
Adam 57.5 | 540 | 0.047
Label smoothing 61.2 | 2484 | 0.085
Self-supervision 57.1 389 | 0.041
Entropy-SGD 58.6 | 5773 | 0.054
TRADES 56.7 | 947 | 0.089
MART 61 1285 | 0.087
AT-AWP 54.3 | 1200 | 0.241

Table A: Hessian Eigenvalue)\, and Convexity: For
the models from Fig. A and B, we report RErr against Au-
toAttack [19], the maximum Hessian eigenvalue Ay.x and
the convexity measure of [54] computed as [Aminl/| A\ |. This
fraction is supposed to quantify the degree of non-convexity
around the found minimum. As can be seen, neither A«
nor convexity correlate well with adversarial robustness.
Regarding A\, this is due to the Hessian eigenspectrum not
being scale-invariant, as shown for scaled versions (x0.5
and x2) of our AT baseline.

where w(*) are the weights in iteration ¢ after the gradi-
ent update. Weight averaging is motivated by finding the
weights w in the center of the found local minimum. As, de-
pending on the learning rate, training tends to oscillate, the
average of the iterates is assumed to be close to the actual
center of the minimum. In our experiments, we consider
7 € {0.98,0.985,0.99,0.9975}.

Weight Clipping: Following [85], we implement weight
clipping by clipping the weights to [—wmax, Wmax] after each
training iteration. We found that wy.x can be chosen as
small as 0.005, which we found to work particularly well.
Larger wyax does not have significant impact on adversarial
robustness for AT. [85] argues that weight clipping together
with minimizing cross-entropy loss leads to more redundant
weights, improving robustness to random weight perturba-
tions. As result, we also expect weight clipping to improve
flatness. We consider wy,x € {0.005,0.01,0.025}.

Ignoring Incorrect Examples & Preventing Label
Leaking: As robust overfitting in AT leads to large
RLoss on incorrectly classified test examples, we investi-
gate whether (a) not computing adversarial examples on in-
correctly classified examples (during training) or (b) com-
puting adversarial examples against the predicted (not true)
label (during training) helps to mitigate robust overfitting.
These changes can be interpreted as ablations of MART
[92] and are easily implemented. Note that option (b) is
essentially computing adversarial examples without label
leaking [51]. However, as shown in Fig. G, these two vari-
ants of AT have little to no impact on robust overfitting.

AutoAugment: In [2 1], an automatic procedure for find-
ing data augmentation policies is proposed, so-called Au-
toAugment. We use the found CIFAR10 policy (cf. [21], ap-
pendix), which includes quite extreme augmentations. For

10

o -
,‘»' AT (baseline)
Il" = Ignore incorrect
) # Prevent label leaking;
84 » |
& MART
72
¥
4 Al
% o JI Correct
j , ‘:,' Incorrect
!
ey Sttt |
W PR
! ! _,,/"—N.
2 1= Py ey _»;‘//:..j e R
0 - - - -
0.0 0.2 0.4 0.6 0.8 1.0
Epoch (Normalized)

Figure G: Approaches of Handling Incorrect Examples:
We plot test RLoss on all (solid), correctly classified (dot-
ted) and incorrectly classified (dashed) examples through-
out training. We consider our AT baseline (), ig-
noring incorrectly classified training examples in the RLoss
computation during training (dark blue) and preventing la-
bel leaking by computing adversarial examples against the
predicted labels during training (rosc). However, these
“simple” approaches of tackling the high RLoss on incor-
rectly classified test examples are not successful in reducing
robust overfitting. As outlined in the main paper, MART
[92] () is able to dampen overfitting through an addi-
tional robust KL-loss weighted by confidence, see text.

example, large translations are possible, rendering the im-
age nearly completely uniform, only leaving few pixels at
the border. In practice, AutoAugment usually prevents con-
vergence and, thus, avoids overfitting. We further combine
AutoAugment with CutOut [23] (using random 16 x 16
“cutouts”). We apply both AutoAugment and CutOut on
top of our standard data augmentation, i.e., random flipping
and cropping. We use publicly available PyTorch imple-
mentations' .

Entropy-SGD [12] explicitly encourages flatter minima
by taking the so-called “local” entropy into account. As a
result, Entropy-SGD not only finds “deep” minima (i.e., low
loss values) but also flat ones. In practice, this is done using
nested SGD: the inner loop approximates the local entropy
using stochastic gradient Langevin dynamics (SGLD), the
outer loop updates the weights. The number of inner itera-
tions is denoted by L. While the original work [12] uses L
in [5,20] on CIFAR10, we experiment with L € {1,2,3,5}.
Note that, for fair comparison, we train for 150/L epochs.
For details on the Entropy-SGD algorithm, we refer to [12].
Our implementation follows the official PyTorch implemen-
tation”.

Activation functions: We consider three recently pro-
posed activation functions: SiLU [28], MiSH [62] and

Ihttps://github.com/DeepVoltaire/AutoAugment
https://github.com/uoguelph-mlrg/Cutout
2https://github.com/ucla-vision/entropy-sgd

https://github.com/DeepVoltaire/AutoAugment
https://github.com/uoguelph-mlrg/Cutout
https://github.com/ucla-vision/entropy-sgd

‘Weight Decay Label Smoothing

Label Noise Batch Size
I T

10 - T 4.0 4.0 4.0
No weight decay Tabel smoothing 7=0.1 Tabel noise Batch size 8 o]
3.5 4-f— Weight decay 0.001 35 Label smoothing 7=0.2 Pl
Weight decay 0.005 Label smoothing 7=0.3 JM’(
30 Weight decay 0.01 30 W
TE Weight, decay 0.05 // — Label noise 7=0.5
2.5 oy 2.5 25 9.5 4-I=—=_Batch size 512
@ @ A @
Y l / £, s £, e 4 £, 4
S 2.0 Refekdnonzs 3 201K S 2 T A ST 8 5 2 i
= \‘M’J W 2 "'-----..:’/ = MW = 4 W ‘ f
R e L<‘_‘r74 15 . 15 5 o' W el M
10 - f J) A S TS E— 10 10 s -
— o —
0.5 H— Tost | 0.5 Test 0.5 Tost | 0.5 H— Tost | ==
Train Train Train Train| | e
0.0 : 0.0 0.0 T 0.0 :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10
Epoch (Normalized) Epoch (Normalized) Epoch (Normalized) Epoch (Normalized)
, Self-Supervision MART TRADES , Entropy-SGD
0 0 T I
g = Entropy.
A6 35 H—
9
2.50 S A=3 CE 3.0
} TRADES A=6 CE
2.25 1 TRADES A=9 CE| 2.5
% Z 2 200 %
Q4 =3 g 2 Q
3 3 3 = 207%;
= ~ ~ ~ N
L5 - -.,_M—’W
1.0 L0 e
= 0.5 H— Test |———F————F—— 0.5 Tost
Train
0.0 0.0 0.0

0.4 0.6
Epoch (Normalized)

0.2 0.8 1.0 0.2 0.4 0.6

Epoch (Normalized)

0.8

1.0

04 06
Epoch (Normalized)

0.0 0.2 0.0 0.2 0.4 0.6

Epoch (Normalized)

0.8

Figure H: Training Curves for Varying Hyper-Parameters: We plot RLoss for selected methods and hyper-parameters to
demonstrate the impact of hyper-parameters on avoiding or reducing robust overfitting. Note that, for TRADES, we show
both RLoss on adversarial examples computed by maximizing the KL-divergence in Eq. (13) (solid) and on adversarial
examples obtained by maximizing cross-entropy loss (“CE”, dotted).

GeLU [39]. These are defined as:

(SILU) LUO'(LU) with U(LC) = 1/(1Jrexp(fa:)), ©))
(MiSH) z tanh(log(1 + exp(z))), (10)
(GeLU) z0(1.702z). (11)

All of these activation functions can be seen as smooth ver-
sions of the ReLLU activation. In [82], some of these activa-
tion functions are argued to avoid robust overfitting due to
lower curvature compared to ReLU.

AT-AWP: AT with adversarial weight perturbations (AT-
AWP) [96] computes adversarial weight perturbations on
top of adversarial examples to further regularize training.
This is similar to our worst-case flatness measure of RLoss,
however, adversarial examples and adversarial weights are
computed sequentially, not jointly, and only one iteration
is used to compute adversarial weights. Specifically, after
computing adversarial examples Z = x + ¢, an adversarial
weight perturbation v is computed by solving

max, e g, (w) L(f(T;w +v),y) (12)

with B¢(w) as in Eq. (4) using one iteration of gra-
dient ascent with fixed step size of £. The gradient
is normalized per layer as in Eq. (2). We considered
¢ € {0.0005,0.001,0.005,0.01,0.015,0.02} and between
1 and 7 iterations and found that ¢ = 0.01 and 1 iteration
works best (similar to [96]).

TRADES: [102] proposes an alternative formulation of
AT that allows a better trade-off between adversarial robust-
ness and (clean) accuracy. The loss to be minimized is

L(f(x;w),y)

13
+ Amax s <e KL(f(z;w), f(z + 6;w)). (13

During training, adversarial examples are computed by
maximizing the KL-divergence (instead of cross-entropy
loss), i.e., using the second term in Eq. (13). Commonly
A 6 is chosen, however, we additionally tried A €
{1,3,6,9}. We follow the official implementation.

MART [92] explicitly addresses the problem of incor-
rectly classified examples during training. First, the cross-
entropy loss £ for training is replaced using a binary cross-
entropy loss Ly, i.e., classifying correct class vs. most-
confident “other” class:

Lin(f(z30),y) = — log(fy(x;w))
—log(1 — maxy 2y fyr (z;w)).

(14)

Second, the KL-divergence used in TRADES in Eq. (13) is
combined with a confidence-based weight:

‘Cbin(f(‘i;w)7y)
+ AKL(f (z; w), f(Z5w0)()(1 = fy(z;w))

3https://github.com/yaodongyu/TRADES

15)

https://github.com/yaodongyu/TRADES

€=9/255 Weight clipping 0.005 Label smoothing 0.3 Label noise 0.3 Cyclic x4 Weight decay 0.05 Entropy-SGD L=1 o
- 15
. , % 2.1 . 1o ® - ¢ 3.00 19 L] »
0 24 @ - "
° 20 181 @ 5
3.0 2.2 . © 18)50 L8 8‘.
°© %, "To g1 %, 8
e, S 2 S ST S 52258 ST 5
=2 9] = =18 = = O = = L] B
@) 1 16 @ 200 125
20 1710 16 b 16 135
© L75 15
0 1% 2 e -8 i) . L
! K | () S © ©
0 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1 2
Avg Flatness Avg Flatness Avg Flatness Avg s Avg Flatness Avg Flatness Avg Flatness
TRADES \=6 MART \=6 AutoAugment SiLU GeLU MiSH (@ >
15
Q S ¢
1754) [) " 40 .. 35 !7 »
35 @ Q) 15
170 24 @ L8 o -
o o 35— +— Q Q
165 - @———— ‘ ° 30 3.0 Qo w
Zi60@——— %) H H o 230—o—— % Q % o
=20 =16 =, = =25 105
(=i = = 9 2 e = e
e0 . O 254+——+—1— 0] 1%
- 18 5 2
10 o 20 2o [} 20 b
Lty ———— 16 14 o° > o ® |@ Nowe
01@ 1 — 14 13 1"" 13«’ 13'
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Avg Flatness Avg Flatness Avg Flatness Avg Flatness Avg Flatness Avg Flatness

Figure I: Flatness Throughout Training: Complementary to the main paper, we plot RLoss against average-case flatness in
RLoss for selected methods throughout training epochs. Early epochs are shown in dark blue, late epochs are shown in dark
red. For cyclic learning rate, we show 4 cycles with a total of 120 epochs. For many methods not avoiding robust overfitting,
flatness decreases alongside an increase in RLoss during overfitting. Using, e.g., AutoAugment, label noise or Entropy-SGD,

in contrast, both effects are reduced.

Adversarial examples are still computed by maximizing
regular cross-entropy loss. We follow the official imple-
mentation*. MART is successful in reducing robust overfit-
ting on incorrectly classified examples, as shown in Fig. G.

PGD-7: In [103], a variant of PGD is proposed for
AT: PGD-7 stops maximization 7 iterations after the label
flipped. This is supposed to find “friendlier” adversarial ex-
amples that can be used for AT. Note that 7 = 0 also does
not compute adversarial examples on incorrectly classified
training examples. We consider 7 € {0,1, 2, 3}.

Self-Supervision: Following [40], we implement AT us-
ing rotation-prediction as additional self-supervised task.
Note, however, that no additional (unlabeled) training ex-
amples are used. Specifically, the following learning prob-
lem is tackled:

max| 5. < L(f(x + 6 w), y)
+ Amax s <e L(f(rot(z 4 0,7);w),y.) (16)
r € {0,90, 180,270}, y, € {0,1,2,3}

where rot(x,r) rotates the training example x by r de-
grees. In practice, we split every batch in half: The first
half uses the original training examples with correct la-
bels. Examples in the second half are rotated randomly by
{0,90, 180,270} degrees, and the labels correspond to the
rotation (i.e., {0,1,2,3}). Adversarial examples are com-
puted against the true or rotation-based labels. Note that, in
contrast to common practice [83], we do not predict all four
possible rotations every batch, but just one randomly drawn
per example. We still use 150 epochs in total. We consider
A €{0.5,1,2,4,8}.

4https://qithub.com/YisenWanq/MART

Additional Unlabeled Examples: As proposed in [!1,

], we also consider additional, pseudo-labeled examples

during training. We use the provided pseudo-labeled data

from [11] and split each batch in half: using 50% original

CIFARIO training examples, and 50% pseudo-labeled train-

ing examples from [11]. We still use 150 epochs in total.
We follow the official PyTorch implementation”.

G.1. Training Curves

Fig. H shows (test) RLoss throughout training for se-
lected methods and hyper-parameters. Across all methods,
we found that hyper-parameters have a large impact on ro-
bust overfitting. For example, weight decay or smaller batch
sizes can reduce and delay robust overfitting considerably
if regularization is “strong” enough, i.e., large weight de-
cay or low batch size (to induce more randomness). For
the other methods, difference between hyper-parameters is
more subtle. However, across all cases, reduced overfitting
generally goes hand in hand with higher RLoss on train-
ing examples, i.e., the robust generalization gap is reduced.
This indicates that avoiding convergence on training exam-
ples plays an important role in avoiding robust overfitting.

Training curves for all methods are shown in Fig. K.

G.2. Flatness for Methods

Flatness Throughout Training: Fig. I shows RLoss
(y-axis) plotted against average-case flatness in RLoss (x-
axis) throughout training, i.e., over epochs (dark blue to
dark red), for methods not shown in the main paper. Strik-
ingly, using higher e=9/255 or alternative activation func-

5https://github.com/yaircarmon/semisupfadv

https://github.com/YisenWang/MART
https://github.com/yaircarmon/semisup-adv

Learning Rate Schedules Label Smoothing/Noise, Weight Decay Weight Clipping, Entropy-SGD, AT-AWP Self-Supervision, MART, TRADES Weight Clipping, Entropy-SGD, AT-AWP
B 5 " 10 o [10
0 o s
e o o s
® ollo s
o s
5 o oL [[9 s
_ 30 - o r o~
5 - e
g I8 o| £ o g q
® 5 ° P el] @ rebis P
K| o1 o < L) o ES A-1 g °
H E 9! = . © TRADES A3]
H 2 oo 16 ° @ TRADES A °
o Pl Pel © @ TRADES
9 e ® o o° 2 @ MARTA-1 ° °
o o [} @ MARTA-3
o 8 N H ©gp0 ° ° ® MART A 409 9
o ® |0 ® ° o |g @ MARTA-0 °
05 10 2 ‘ 5 10 02 Lo 0 04 06 08 10 12 1 ' 6 § 10 2
Average-Case Flatness in RLoss As Case Flatness in RLoss Av in RLos Average-Case Flatness in RLoss Worst-Case Flatness in RLoss

Figure J: Robustness and Flatness for Varying Hyper-Parameters: Left: RLoss (y-axis) plotted against average-case
flatness of RLoss (x-axis) for various groups of methods: learning rate schedules (left), label smoothing/noise and weight
decay (middle left), weight clipping, Entropy-SGD and AT-AWP (middle right) as well as AT with self-supervision, MART
and TRADES (right). As outlined in Sec. G, we considered multiple hyper-parameter settings per method and show that
favorable hyper-parameters in terms of adversarial robustness also result in improved flatness. That is, in most cases, varying
hyper-parameters creates (roughly) a diagonal line in these plots. Interestingly, weight clipping can be considered an outlier:
adversarial robustness improves while average-case flatness reduces. Right: RLoss (y-axis) plotted against worst-case
flatness in RLoss (x-axis). Here, flatness for weight clipping aligns well with RLoss.

tions (SiLU [28], GeLU [39] or MiSH [62]) affect neither
robust overfitting nor flatness significantly. Interestingly, as
discussed in the main paper, label smoothing avoids sharper
minima during overfitting, but does not avoid an increased
RLoss. Methods that consistently reduce or avoid robust
overfitting, e.g., weight clipping, label noise, strong weight
decay or AutoAugment, avoid both the increase in RLoss
as well as worse flatness. Clearly, the observations from the
main paper are confirmed: flatness usually reduces along-
side RLoss in robust overfitting.

Flatness Across Hyper-Parameters: In Fig. J, we
consider flatness when changing hyper-parameters of se-
lected methods. As before, we plot RLoss (y-axis) against
average-case flatness in RLoss (x-axis) for various groups
of methods: learning rate schedules (first column), la-
bel smoothing/noise and weight decay (second column),
methods explicitly improving flatness, i.e., weight clip-
ping, Entropy-SGD and AT-AWP (third column), as well
as self-supervision, MART and TRADES (fourth column).
Except for weight clipping, hyper-parameter settings with
improved adversarial robustness also favor flatter minima.
In most cases, this relationship follows a clear, diagonal
line. For weight clipping, in contrast, the relationship is
reversed: improved flatness reduces RLoss. Thus, Fig. J
(fifth column) considers worst-case flatness in RLoss. Here,
“stronger” weight clipping improves both robustness and
flatness. This supports our discussion in the main paper:
methods need at least “some kind” of flatness, average- or
worst-case, in order to improve adversarial robustness.

H. Results in Tabular Form

Tab. D and E report the quantitative results from all our
experiments. Besides flatness in RLoss, we also report both
average- and worst-case flatness in (clean) Loss. As de-
scribed in the main paper, we use £ = 0.5 for average-case

flatness and £ = 0.003 for worst-case flatness. In Tab. D,
methods are sorted (in ascending order) by RErr against Au-
toAttack [20]. Additionally, we split all methods into four
groups: good , average , poor and worse robustness at

57%, 60% and 62.8% RErr. These thresholds correspond
roughly to the 30% and 70% percentile of all methods with
RErr < 62.8%. As our AT baseline obtains 62.8% RErr, we
group all methods with higher RErr than 62.8% in worse
robustness. In Tab. E, methods are sorted (in ascending or-
der) by RLoss against PGD. Finally, Tab. B and C report
RErr and RLoss, together with our average- and worst-case
flatness (of RLoss) measures for the evaluated, pre-trained
models from RobustBench [18].

Model Test Robustness Train Robustness Flatness
(sorted by RLoss on AA) Err RErr RErr Err RErr RE1r Avg Worst
(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) RLoss RLoss
(AA = AutoAttack [19]) (PGD) (AA) (PGD) (AA)

Carmon et al. [7] 10.31 37.6 40.8 1.93 16.8 19.2 0.7 0.34
Engstrom et al. [16] 12.97 453 49.2 6.71 33.1 36.3 0.23 0.51
Pang et al. [43] 14.87 36.6 45.8 7.79 20.5 28.6 0.08 0.07
Wang [60] 12.5 37.1 42.8 8.07 24.8 32.1 0.61 0.34
Wong et al. [61] 16.66 54.4 57.6 11.86 449 49.2 0.3 0.16
Wu et al. [62] 14.64 415 439 22 14.5 16.5 0.49 0.09
Zhang et al. [72] 15.08 44.1 46.4 7.83 29.9 33.6 0.61 0.43
Zhang et al. [73] 15.48 43 47.2 4.85 26.3 30.1 0.51 0.13

Table B: RobustBench [18]: Err, RErr and Flatness in RLoss: Err and RErr on train and test examples as well as average-
and worst-case flatness in RLoss for pre-trained models from RobustBench. In contrast to Tab. D, the RobustBench models
were obtained using early stopping.

Model Test Robustness Train Robustness Flatness
(sorted by RLoss on AA) Loss RLoss RLoss Loss RLoss RLoss Avg Worst
(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) RLoss RLoss
(AA = AutoAttack [19]) (PGD) (AA) (PGD) (AA)

Carmon et al. [7] 0.53 1.02 0.63 0.36 0.62 0.41 0.7 0.34
Engstrom et al. [16] 0.44 1.25 0.59 0.29 0.82 0.41 0.23 0.51
Pang et al. [43] 1.84 1.98 1.86 1.8 1.91 1.8 0.08 0.07
Wang [60] 0.64 1.11 0.73 0.54 0.9 0.6 0.61 0.34
Wong et al. [61] 0.57 1.37 0.73 0.46 1.11 0.61 0.3 0.16
Wu et al. [62] 0.63 1.13 0.72 0.37 0.61 0.41 0.49 0.09
Zhang et al. [72] 0.55 1.19 0.66 0.39 0.83 0.48 0.61 0.43
Zhang et al. [73] 0.85 1.27 0.93 0.71 1.01 0.76 0.51 0.13

Table C: RobustBench [18]: Loss, RLoss and Flatness in RLoss: Loss and RLoss on train and test examples as well as
average- and worst-case flatness in RLoss for pre-trained models from RobustBench. In contrast to Tab. E, the RobustBench
models were obtained using early stopping.

€~ 0.0353 PGD-5 PGD-14 Ignore incorrect Prevent label leaking

Tram Train
4 4 Test. / v 3 T
2 / 2 2 //4 %
8 8 8 Zy Pl
3 3 3 3 2 [Ao
Zo e = Vat z? =
1
0 ‘ v 0 ‘ ; T T 0 ‘ = +
00 02 04 06 10 00 02 04 06 08 08 10 00 02 6 08 10
0.75 l l 0.75 06
= = I
i 050 504
~ T ~
025 Tes 02
[" l— Early Stopping (LS)') Early Stopping (ES) !
! 0
00 02 04 06 08 L 00 02 06 10 00 02 04 06 L0 00 02 04 06 08 10 00 02 04 06 08 10
Epochs (Normalized) (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized)
‘Weight clipping w,,,,=0.005 Label smoothing 7=0.3 Label noise 7=0.3 “Late” multi-step Const learning rate
3 T Tram Traim Traim 4 Tram
Test Test 4 Test | Test Test |
2 %3 g " %3
8 8 g, 8 8
=2 t = =3 = =
= =0 ot = =, 7 =,
2
L —— —— = [) s e e
00 02 04 06 08 08 10 00 02 04 06 08 10 00 02 06 08 10 00 02 04 06 08 10
08 5 ‘ ‘
08 \ 0.75
] k06 =
& g 506 & 050 y v
~ Train =] =
Test 04 025 s o
0.4 Early Stopping (ES) — = _Early Stopping (ES) ‘ ‘ 2 Early Stopping (ES) oppivg 9] | ‘
00 02 04 06 08 10 00 02 04 06 08 LC 00 02 04 06 08 10 00 02 04 06 08 LC 00 02 04 06 08 10
Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized)
Cyclic x4 Learning rate 0.2 Batch size 16 Batch size 512 No weight decay
T T
3 10 Tram Train]| Traim Tram
Test 6 Test | 3 Fest 4 Fest |
3 25 3 3
= \“'NMTWJM = L = =2 —
L
1 . v
| 0 . ' B 0 B B
00 02 04 06 08 10 00 02 04 06 08 10 00 08 10 00 02 04 06 10
100
I\ 075 \
0.75 075 . ‘
L 075 . .
2 & 050 & 0,50
& 050 RS e W Tram ™
Test 0.25 Test . s
s Iy Stopping l l — Early Stopping (ES) i 025 11— Ealy Stopping (IS, Early Stopping (ES) |-
.25 I
00 02 04 06 08 10 00 02 04 06 08 L 00 02 04 06 08 L 00 02 04 06 08 1.0 00 02 04 06 08 10
Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized)
‘Weight decay 0.05 Entropy-SGD L=1 PGD-7-0* TRADES* \=6 MART \=6
) T T T T
6 Tram] T 15 4= Tram] Tram] 75
Test st Test 3 Test |
%4 2 4 2 101w Z %50
= A = = b = =
AdhA,
2 2 05 ! _‘_‘; 25
e, 1 ‘ ‘ \r_T__.—
|
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
08 l
08 0.75 015
&= 06 15 0.50 & 050 s
= ST 1 = = Trim \
04 LT WY} 0.25 fost 0251 Test B
=l Stopping 9] Eurly Stopping (55)]") - Earl Stopping (59)] |
! T !
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 LI 00 02 04 06 08 10 00 02 04 06 08 10
Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized) Epochs (Normalized)
AutoAugment +Unlabeled SiLU GeLU MiSH
o | 4 —
Train| Train|
1 T | . Pranl Tkt /r
z /| N
33 3 32
= = = / . vV
? \7__.*__‘ : l ‘ ‘
! — 0 r . .
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
I 7 I
. 0.75 0.75
08 0.75 L [
08
Li‘:'j rf &‘ !5 050 \‘— h:l 050 ;5 050
P g = 06 Mo o “Tram l = 025 (=
: > Tebt 0.25 Test 25 s 025
Early S 2 Stopping: Mo maran, [=— Early Stopping (ES) Early Stopping (ES)
041E T T o 0.00 = 0.001 = 2 0.00 +
00 02 04 038 L0002 04 06 08 10 0.0 08 L 00 02 04 06 08 10 00 02 04 06 08 10
Epochs (Normalized) Epochs (Normalized) hs (Normalized) Epochs (Normalized) Epochs (Normalized)
Dropout Self-supervision \ AT-AWPT £=0.01
6 . . o s .
I:—‘.m.. = Figure K: Training Curves: Test and train
e Tost
1 & z RLoss (top) and RErr (bottom), including RErr
- = g AA
por 2 =15 . .
— 2 P ™ for early stopping, for all considered methods
| ! | I T o I : : % :
0002 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 with selected hyper parameters' Train and
0.8
07 0s test RLoss correspond to the attacks used dur-
i1 v Soo ing training, e.g., PGD-7 or maximizing KL-
Train = Train .
A divergence for TRADES. { Reported RLoss
atly Stoy S
; - | ! 04 S—— .
00 oz o1 o6 os 1 Ce0 02 o1 o6 o5 10 w o2 o1 o os 1o corresponds to RLoss on adversarial examples
Epochs (Normalized) Epochs (Normalized) Epochs (Normalized)

without adversarial weights.

Model Test Robustness Train Robustness Early Stopping Flatness

(sorted by RErr on AA) Err RErr RErr Err RErr RErr RErr RErr Avg Worst Avg Worst

(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) (stop) (stop) Loss Loss RLoss RLoss

(AA = AutoAttack [19]) (PGD) | (AA) (PGD) (AA) (PGD) (AA)
+Unlabeled 16.96 459 489 12.6 38.6 432 453 48.9 0.12 4.64 0.32 1.2
Cyclic X2 19.66 51.2 53.6 7.64 323 354 51 53.6 0.09 3.93 0.35 1.5
AutoAugment 16.89 49.5 54.0 12.25 42.8 47.9 49.5 535 0.13 15.01 0.49 0.69
AT-AWP £=0.01 21.4 50.7 543 13.52 374 43.1 489 53.6 0.12 6.17 0.35 2.68
AT-AWP £=0.005 20.05 52.5 55 7.34 28.1 31.8 50.8 533 0.15 6.98 0.54 4.46
Label noise 7=0.4 20.56 524 55 9.66 32.8 36.8 51.2 54.8 0.11 3.95 0.21 0.96
TRADES A\=9 23.03 52.4 55 2.92 16.4 18.8 49.7 53 0.19 5.04 0.45 3.08
Cyclic x3 20.04 53.1 55.2 5.62 26.9 30.6 53.1 55.2 0.1 4.1 0.53 0.93
Cyclic 22.42 532 55.4 13.09 39.5 435 532 55.4 0.07 2.6 0.22 0.41
Label noise 7=0.5 22.71 51.3 554 15.04 40.4 455 513 554 0.09 0.43 0.16 0.13
Label noise 7=0.3 19.9 54.2 56.2 5.47 26.9 30 51.8 55.5 0.15 3.37 0.33 0.93
Weight clipping Wy, =0.005 21.39 54.1 56.5 10.19 35.6 39 54.1 56.5 0.74 10.49 0.41 4.58
TRADES A=6 21.68 55.3 56.7 1.74 13.5 15.8 50.1 534 0.21 5.12 0.57 2.26
Cyclic x4 19.85 55.2 56.9 4.01 23.1 26 55.1 56.9 0.16 6.65 0.62 0.8
Self-supervision A=4 17.1 553 57.1 5.76 41.9 45 553 56.8 0.12 5.59 0.34 2.64
Adam 25.84 53.9 57.5 18.87 479 523 53.9 57.5 0.22 2.65 0.56 0.9
Entropy-SGD (L=2) 24.53 54.4 57.6 9.03 354 38.8 52.6 55.2 0.08 1.76 0.27 0.7
Self-supervision A=1 15.9 56.9 58.1 1.48 28.3 31.6 55.9 57.5 0.12 6.98 0.46 3.87
Weight decay 0.05 19.32 56.2 58.1 5.03 29 32.8 52 54.8 0.12 5.77 0.51 3.94
Batch size 8 17.73 57.1 58.2 3.46 26.8 314 55.6 58.2 0.32 24.01 1.55 12.27
Entropy-SGD (L=1) 25.42 56 58.6 12.79 42.8 46.1 532 56.9 0.09 3.24 0.28 1.8
Self-supervision A=0.5 16.16 58 58.6 1.26 28 30.7 56.7 58.3 0.1 6.48 0.45 3.29
AT-AWP £=0.001 18.75 57.3 58.7 1.34 15.1 18.3 52.1 54.6 0.34 20.42 1.44 13.82
Self-supervision A=2 15.72 57.4 58.7 2.47 334 36.6 55.8 57.7 0.1 21.79 0.47 3.47
MART A\=9 22.06 57 58.8 3.86 16 22 50 55 0.18 8.08 0.7 3.42
Weight decay 0.01 18.52 57.2 58.9 2.06 20.1 232 51.7 553 0.25 16.46 0.9 7.19
Batch size 16 18.12 58.3 59 1.82 20.4 245 52.5 55.6 0.33 22.11 1.41 11.39
Self-supervision A=8 19.6 56.6 59 12.08 50 533 56.6 58.6 0.11 3.59 0.29 1.76
TRADES A=3 20.51 57.7 59.1 0.94 13.4 15.5 523 54.9 0.2 19.08 0.71 3.48
Weight decay 0.005 18.79 58.2 59.4 2.03 20.2 23.9 51.8 543 0.26 19.67 1.2 8.35
Label noise 7=0.2 19.45 57.5 59.5 2.34 18.8 222 50.2 53 0.18 9.79 0.39 1.4
MART A\=3 20.89 58.9 59.6 1.94 14.4 19.2 53.3 57.4 0.17 10.53 1.01 3.99
Weight clipping Wy, ¢ =0.01 19.15 58 59.6 3.28 21.5 24.8 56.7 58.5 0.66 15.1 0.26 7.41
Learning rate 0.2 19.17 58.3 59.7 0.46 9.4 12.4 543 56.6 0.2 24.41 1.44 5.75
MiSH 19.29 58.9 59.8 0.06 45 53 51.8 53.7 0.25 10.04 1.58 3.55
“Late” multi-step 20.63 58.5 59.8 1.6 16.4 18.4 54.2 57.8 0.17 5.24 0.81 2.96
SiLU 19.45 59.7 60 0.07 4.8 5.6 513 53.7 0.3 9.97 1.68 42
Weight averaging (7=0.9975) 19.63 59.7 60 0.19 7.9 10 50.5 53 0.23 15.66 1.29 6
Weight clipping 0.025 18.91 59.2 60.4 0.73 12.5 15.6 52.1 54.9 0.32 17.4 0 8.61
Batch size 32 18.72 59.6 60.5 0.56 12 14.6 53.7 55.6 0.18 19.34 1.22 7.88
Entropy-SGD (L=3) 24 58.5 60.5 5.25 29.9 33.9 56.7 59.3 0.09 291 0.33 1.03
Label noise 7=0.1 19.39 59 60.8 1.12 14.1 17.5 51.9 55 0.2 16.75 0.69 3.55
Larger e=9/255 21.3 60.4 60.9 0.47 8.9 11.1 51.3 53.8 0.21 10.26 1.34 5.85
Label smoothing 7=0.1 19.55 59.6 61 0.2 6.4 8.5 52.5 55 0.26 8.87 0.85 2.66
MART A\=6 21.51 58.7 61 3.21 16.1 20.8 49.2 54.7 0.18 13.52 0.74 3.17
Weight averaging (7=0.98) 20.01 60.6 61 0.2 7.6 9.9 543 56.3 0.23 12.8 1.37 5.6
Weight decay 0.001 19.47 59.9 61 0.36 10.4 133 52 54.8 0.24 8.36 1.3 6.78
Batch size 64 19.06 60.5 61.1 0.3 9.2 11.1 51.2 54.4 0.18 23.13 1.14 5.96
GeLU 20.64 60.8 61.1 0.01 2.7 32 54.9 56.7 0.23 14.31 1.56 4.13
Label smoothing 7=0.3 19.41 59.4 61.2 0.27 5.7 8 51.1 54 0.29 18.42 0.65 2.72
MART A=1 20.51 59.4 61.2 1.04 11.4 14.7 50.3 55.4 0.17 7.97 0.87 3.1
Weight averaging (7=0.99) 20.41 60.3 61.4 0.19 7.8 9.6 51.7 54.2 0.22 6.12 1.44 4.98
Dropout 18.91 60.5 61.6 0.58 13 16.7 51.2 54.5 0.2 13.81 1.52 7.01
PGD-14 20.8 60.6 61.6 0.22 7.1 9.3 53.6 56.1 0.27 20.9 1.48 5.35
Entropy-SGD (L=5) 23.48 59.5 61.7 3.01 222 25.9 532 56.6 0.1 3.57 0.46 1.49
Ignore incorrect 18.4 60.5 61.8 0.06 6.3 9 54.4 56.4 0.21 14.65 1.68 5.93
Learning rate 0.1 19.23 61.1 61.9 0.26 8.9 11.5 51.9 54.2 0.21 17.63 1.23 5.26
TRADES A\=1 17.54 59.5 61.9 0.15 16.6 20.7 56.6 59.6 0.16 12.68 0.78 4.3
Weight averaging (7=0.985) 20.27 61.7 62.3 0.18 7.4 9.4 55.9 58 0.22 15.66 1.35 6.51
Label smoothing 7=0.2 20.07 60.2 62.4 0.26 5.1 7.8 51.9 54.6 0.28 9.94 0.69 2.61
Prevent label leaking 18.38 62.1 62.4 0.38 8.6 10.8 553 57.7 0.22 14.62 1.48 6
AT (baseline) 20.2 61 62.8 0.33 8.5 10.7 52.3 54.6 0.21 21.05 1.22 6.49
Const learning rate 0.05 24.96 60.7 62.9 6.17 32.9 37.8 55.4 58.9 0.09 3.52 0.44 0.9
PGD-5 20.22 61.8 62.9 0.11 7.3 10.4 55.1 57.4 0.17 20.4 1.24 4.19
Batch size 256 20.86 62.6 63.3 0.28 8.2 10.3 56.9 58.4 0.3 11.22 1.35 8.33
PGD-7-3 17.17 61.7 63.3 0.08 19.5 25.2 513 58.8 0.17 7.4 1.08 5.29
Batch size 512 22.58 62.9 63.5 0.64 11 14.2 58.6 60 0.48 23.97 1.92 16.22
Learning rate 0.01 22.83 63 63.5 1.05 15.2 18 57.8 59.7 0.56 23.42 2.25 16.02
No weight decay 23.37 64.8 65.7 0.23 9.2 12.7 57.1 60.3 0.66 21.05 2.53 11.75
PGD-7-0 14.67 63.8 65.7 0.09 23.7 30 59.4 61.4 0.11 6.86 1.28 2.8
PGD-7-2 16.19 63.6 65.9 0.1 20.9 28.1 583 62.3 0.14 22.81 1.21 2.55
PGD-7-1 15.02 64.1 67.1 0.11 25.9 343 58.8 63.8 0.13 11.71 1.15 2.33
Const learning rate 0.01 25.87 66.7 67.4 0.67 18.5 20.7 58.4 61 0.33 15.09 1.37 8.27
Const learning rate 0.005 27.24 68.3 69.2 0.42 15.5 16.7 61.1 65.5 0.59 20.63 2.06 15.74

Table D: Results: Err, RErr and Flatness in Loss and RLoss. Err and RErr (PGD-20 and AutoAttack [20]) on test and
train examples, together with average- and worst-case flatness in (clean) Loss and RLoss. Methods sorted by (test) RErr
against AutoAttack and split into good , average , poor and worse robustness at 57%, 60% and 62.8% REtr, see text.

Model Test Robustness Train Robustness Early Stopping
(sorted by RLoss on PGD) Loss RLoss RLoss Loss RLoss RLoss RLoss RLoss
(PGD = PGD-20, 10 restarts) (test) (test) (test) (train) (train) (train) (stop) (stop)
(AA = AutoAttack [19]) (PGD) (AA) (PGD) (AA) (PGD) (AA)
+Unlabeled 0.57 1.18 0.67 0.47 0.94 0.56 1.18 0.67
AutoAugment 0.58 1.3 0.71 0.48 1.08 0.61 1.3 0.71
AT-AWP £=0.01 0.7 1.31 0.81 0.55 0.99 0.62 1.3 0.81
Cyclic 0.68 1.41 0.8 0.49 0.97 0.58 1.41 0.8
Adam 0.8 1.46 0.89 0.66 1.19 0.74 1.45 0.89
Weight clipping W, a2 =0.005 0.77 1.48 091 0.53 0.99 0.62 1.47 0.9
TRADES A=9 0.77 1.52 0.9 0.33 0.58 0.37 1.42 0.9
Label noise 7=0.4 0.93 1.55 1.05 0.71 1.15 0.8 1.5 1.05
Cyclic x2 0.6 1.55 0.74 0.32 0.76 0.42 1.55 0.74
AT-AWP £=0.005 0.59 1.57 0.74 0.29 0.66 0.38 1.36 0.74
Self-supervision A=8 0.59 1.58 0.76 0.43 1.24 0.62 1.57 0.76
Entropy-SGD (L=2) 0.72 1.59 0.83 0.4 0.87 0.5 1.44 0.83
Label noise 7=0.5 1.12 1.59 1.22 1 1.39 1.08 1.59 1.22
Entropy-SGD (L=1) 0.77 1.59 0.87 0.5 1.06 0.6 1.44 0.87
Label noise 7=0.3 0.78 1.62 0.94 0.45 0.91 0.55 1.47 0.94
Weight decay 0.05 0.61 1.65 0.78 0.28 0.73 0.39 1.33 0.78
Self-supervision A=4 0.51 1.68 0.71 0.25 1.02 0.45 1.62 0.71
Weight clipping W, q2=0.01 0.62 1.71 0.83 0.22 0.61 0.31 1.59 0.83
TRADES A=6 0.7 1.74 0.86 0.2 0.44 0.25 1.4 0.86
Cyclic x3 0.6 1.75 0.74 0.24 0.65 0.34 1.59 0.74
Entropy-SGD (L=3) 0.69 1.84 0.85 0.26 0.72 0.38 1.57 0.85
Self-supervision A=2 0.47 1.86 0.69 0.13 0.8 0.33 1.53 0.69
Label noise 7=0.2 0.68 1.89 0.9 0.22 0.63 0.32 1.4 0.9
Cyclic x4 0.6 1.9 0.78 0.2 0.57 0.28 1.44 0.78
Const learning rate 0.05 0.75 1.92 0.89 0.31 0.81 0.43 1.54 0.88
Self-supervision A=0.5 0.48 2.01 0.71 0.09 0.67 0.27 1.6 0.71
Entropy-SGD (L=5) 0.71 2.06 0.89 0.18 0.57 0.28 1.5 0.86
Self-supervision A=1 0.48 2.08 0.72 0.09 0.67 0.27 1.63 0.7
Label smoothing 7=0.3 0.77 2.12 1.02 0.15 0.47 0.21 1.46 0.97
TRADES A=3 0.65 2.16 0.85 0.1 0.34 0.17 1.42 0.83
Batch size 8 0.56 222 0.78 0.17 0.64 0.3 1.86 0.76
Label noise 7=0.1 0.63 222 0.87 0.1 0.42 0.19 1.37 0.86
Weight decay 0.01 0.58 223 0.78 0.12 0.47 0.22 1.35 0.78
Label smoothing 7=0.2 0.71 2.26 0.98 0.09 0.35 0.14 1.44 0.89
MART A=9 0.7 2.36 0.93 0.24 0.48 0.3 1.41 0.93
Weight clipping 0.025 0.57 2.37 0.81 0.06 0.32 0.14 1.39 0.81
Weight decay 0.005 0.58 2.44 0.8 0.11 0.46 0.23 1.43 0.76
Label smoothing 7=0.1 0.64 2.48 0.88 0.04 0.24 0.09 1.43 0.8
MART \=6 0.71 2.58 0.93 0.21 0.45 0.27 1.4 0.93
“Late” multi-step 0.66 2.63 0.87 0.09 0.36 0.17 1.47 0.87
TRADES A=1 0.56 2.68 0.81 0.04 0.38 0.18 1.74 0.74
MART A=3 0.69 2.71 0.89 0.14 0.38 0.21 1.48 0.89
AT-AWP £=0.001 0.62 2.71 0.84 0.08 0.34 0.16 1.35 0.78
Batch size 16 0.57 2.78 0.83 0.1 0.46 0.22 1.63 0.74
Learning rate 0.01 0.72 2.94 0.96 0.07 0.34 0.16 1.74 0.85
MART A=1 0.7 2.99 0.94 0.08 0.29 0.15 1.44 0.94
PGD-7-3 0.55 3.03 0.8 0.04 0.48 0.19 1.7 0.73
PGD-7-2 0.54 32 0.79 0.03 0.48 0.21 2.12 0.71
PGD-7-1 0.51 33 0.75 0.04 0.61 0.25 2.43 0.68
Batch size 512 0.77 3.41 1.04 0.05 0.27 0.12 1.86 0.85
PGD-7-0 0.49 3.43 0.74 0.03 0.58 0.21 2.48 0.65
Dropout 0.66 3.44 0.9 0.04 0.3 0.13 1.44 0.76
Const learning rate 0.01 0.89 3.46 1.07 0.04 043 0.17 1.67 0.97
Weight decay 0.001 0.69 3.52 0.92 0.03 0.24 0.1 1.41 0.77
Batch size 32 0.67 3.54 0.91 0.04 0.27 0.11 1.69 0.73
Batch size 64 0.69 3.62 0.93 0.03 0.22 0.09 1.44 0.76
Const learning rate 0.005 0.97 3.65 1.24 0.04 0.35 0.14 1.62 1.12
MiSH 0.69 3.65 0.92 0.01 0.1 0.04 1.45 0.73
Learning rate 0.1 0.7 3.65 0.94 0.02 0.19 0.09 1.39 0.79
Learning rate 0.2 0.72 3.66 0.97 0.03 0.21 0.1 1.67 0.75
Larger e=9/255 0.78 3.69 1.01 0.03 0.19 0.09 1.45 0.79
Prevent label leaking 0.67 3.76 0.91 0.02 0.21 0.08 1.74 0.7
SiLU 0.71 3.81 0.96 0.01 0.11 0.04 1.47 0.73
PGD-14 0.76 3.84 1.05 0.02 0.15 0.07 1.52 0.78
Weight averaging (7=0.9975) 0.73 3.88 1 0.02 0.17 0.08 1.34 0.81
AT (baseline) 0.75 3.91 0.99 0.02 0.19 0.08 1.53 0.77
Weight averaging (7=0.98) 0.75 3.94 1.05 0.02 0.16 0.08 1.96 0.8
Weight averaging (7=0.985) 0.75 3.95 1 0.02 0.16 0.07 1.94 0.77
Ignore incorrect 0.71 3.99 0.96 0.01 0.16 0.07 1.65 0.7
Weight averaging (7=0.99) 0.76 3.99 1.07 0.02 0.18 0.07 1.53 0.74
Batch size 256 0.79 4.02 1.07 0.02 0.18 0.08 1.74 0.81
No weight decay 0.9 4.17 1.15 0.02 0.22 0.1 1.55 0.91
PGD-5 0.77 422 0.99 0.01 0.17 0.08 1.62 0.77
GeLU 0.82 4.27 1.06 0 0.06 0.02 1.7 0.79

Table E: Results: Loss and RLoss. Loss and RLoss (PGD-20 and AutoAttack [20]) on test and train examples corresponding

to the results in Tab. D.

References

(1]

[10]

[11]

[12]

[13]

[14]

[15]

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang,
Alhussein Fawzi, Robert Stanforth, and Pushmeet Kohli.
Are labels required for improving adversarial robustness?
In NeurlIPS, 2019. 9

Laurent Amsaleg, James Bailey, Dominique Barbe,
Sarah M. Erfani, Michael E. Houle, Vinh Nguyen, and Mi-
los Radovanovic. The vulnerability of learning to adversar-
ial perturbation increases with intrinsic dimensionality. In
WIFS, 2017. 1

Anish Athalye and Nicholas Carlini. On the robustness of
the CVPR 2018 white-box adversarial example defenses.
arXiv.org, abs/1804.03286, 2018. 1

Anish Athalye, Nicholas Carlini, and David A. Wagner.
Obfuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. arXiv.org,
abs/1802.00420, 2018. 1

Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mit-
tal. Dimensionality reduction as a defense against eva-
sion attacks on machine learning classifiers. arXiv.org,
abs/1704.02654, 2017. 1

Wieland Brendel and Matthias Bethge. Comment on "bio-
logically inspired protection of deep networks from adver-
sarial attacks”. arXiv.org, abs/1704.01547, 2017. 1

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Good-
fellow. Thermometer encoding: One hot way to resist ad-
versarial examples. In /CLR, 2018. 1

Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods.
In AlSec, 2017. 1

Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In SP, 2017. 1

Nicholas Carlini and David A. Wagner. Defensive dis-
tillation is not robust to adversarial examples. arXiv.org,
abs/1607.04311, 2016. 1

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C.
Duchi, and Percy Liang. Unlabeled data improves adversar-
ial robustness. In NeurIPS, 2019. 1,9

Pratik Chaudhari, Anna Choromanska, Stefano Soatto,
Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer T.
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-
sgd: Biasing gradient descent into wide valleys. In ICLR,
2017. 1,7

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. ZOO: Zeroth order optimization based
black-box attacks to deep neural networks without training
substitute models. In AlSec, 2017. 1

Nicholas Cheney, Martin Schrimpf, and Gabriel Kreiman.
On the robustness of convolutional neural networks to in-
ternal architecture and weight perturbations. arXiv.org,
abs/1703.08245, 2017. 1

Ching-Tai Chiu, Kishan Mehrotra, Chilukuri K. Mohan,
and Sanjay Ranka. Training techniques to obtain fault-
tolerant neural networks. In Annual International Sympo-
sium on Fault-Tolerant Computing, 1994. 1

[16]

(7]

[18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter.
Certified adversarial robustness via randomized smoothing.
arXiv.org, abs/1902.02918, 2019. 1

Francesco Croce, Maksym Andriushchenko, and Matthias
Hein. Provable robustness of relu networks via maximiza-
tion of linear regions. arXiv.org, abs/1810.07481, 2018. 1
Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Nicolas Flammarion, Mung Chiang, Prateek Mittal,
and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. arXiv.org, abs/2010.09670,
2020. 10, 11

Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. arXiv.org, abs/2003.01690, 2020.
5,6,7,11,13, 14

Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In /ICML, 2020. 7, 10, 13, 14

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay
Vasudevan, and Quoc V. Le. Autoaugment: Learning aug-
mentation policies from data. arXiv.org, abs/1805.09501,
2018. 1,7

Dipti Deodhare, M. Vidyasagar, and S. Sathiya Keerthi.
Synthesis of fault-tolerant feedforward neural networks us-
ing minimax optimization. 7NN, 9(5):891-900, 1998. 1
Terrance Devries and Graham W. Taylor. Improved reg-
ularization of convolutional neural networks with cutout.
arXiv.org, abs/1708.04552, 2017. 7

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua
Bengio. Sharp minima can generalize for deep nets. In
ICML, 2017. 5

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In CVPR, 2018. 1,6

Vasisht Duddu, D. Vijay Rao, and Valentina E. Balas. Ad-
versarial fault tolerant training for deep neural networks.
arXiv.org, abs/1907.03103, 2019. 2

Jacob Dumford and Walter J. Scheirer. Backdooring convo-
lutional neural networks via targeted weight perturbations.
arXiv.org, abs/1812.03128, 2018. 1

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxi-
mation in reinforcement learning. NN, 107, 2018. 7, 10
Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv.org, abs/1703.00410, 2017. 1

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen,
Petar Tsankov, Swarat Chaudhuri, and Martin T. Vechev.
Al2: safety and robustness certification of neural networks
with abstract interpretation. In SP, pages 3-18, 2018. 1
Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv.org,
abs/1412.6572,2014. 1

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth,
Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arand-
jelovic, Timothy A. Mann, and Pushmeet Kohli. On the
effectiveness of interval bound propagation for training ver-
ifiably robust models. arXiv.org, abs/1810.12715, 2018. 1

(33]

[34]

(35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy A.
Mann, and Pushmeet Kohli. Uncovering the limits of adver-
sarial training against norm-bounded adversarial examples.
arXiv.org, abs/2010.03593, 2020. 1, 6

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot,
Michael Backes, and Patrick McDaniel. On the (sta-
tistical) detection of adversarial examples. arXiv.org,
abs/1702.06280, 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5,6

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and
Dawn Song. Adversarial example defense: Ensembles of
weak defenses are not strong. In USENIX Workshops, 2017.
1

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali
Chakrabarti, and Deliang Fan. Defending and harnessing
the bit-flip based adversarial weight attack. In CVPR, 2020.
1

Matthias Hein and Maksym Andriushchenko. Formal guar-
antees on the robustness of a classifier against adversarial
manipulation. In NeurIPS, 2017. 1

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities
and stochastic regularizers with gaussian error linear units.
arXiv.org, abs/1606.08415, 2016. 8, 10

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and
Dawn Song. Using self-supervised learning can improve
model robustness and uncertainty. In NeurlPS, 2019. 1, 9
Andrew llyas, Logan Engstrom, and Aleksander Madry.
Prior convictions: Black-box adversarial attacks with ban-
dits and priors. arXiv.org, abs/1807.07978, 2018. 1
Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos
Daskalakis, and Alexandros G. Dimakis. The robust mani-
fold defense: Adversarial training using generative models.
arXiv.org, abs/1712.09196, 2017. 1

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 3,5, 6

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
UAI 2018. 6

Daniel Jakubovitz and Raja Giryes. Improving DNN ro-
bustness to adversarial attacks using jacobian regulariza-
tion. arXiv.org, abs/1803.08680, 2018. 1

Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting
Wang. Model reuse attacks on deep learning systems. In
CCS, 2018. 1

Harini Kannan, Alexey Kurakin, and Ian J. Goodfellow.
Adversarial logit pairing. arXiv.org, abs/1803.06373, 2018.
1

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 5

Aounon Kumar, A. Levine, S. Feizi, and T. Goldstein.
Certifying confidence via randomized smoothing. ArXiv,
abs/2009.08061, 2020. 1

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv.org,
abs/1607.02533, 2016. 1

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. arXiv.org, abs/1611.01236,
2016. 7

Alex Lamb, Jonathan Binas, Anirudh Goyal, Dmitriy
Serdyuk, Sandeep Subramanian, loannis Mitliagkas, and
Yoshua Bengio. Fortified networks: Improving the robust-
ness of deep networks by modeling the manifold of hidden
representations. arXiv.org, abs/1804.02485, 2018. 1
Guang-He Lee, David Alvarez-Melis, and Tommi S.
Jaakkola. Towards robust, locally linear deep networks.
arXiv.org, abs/1907.03207, 2019. 1

Hao Li, Zheng Xu, G. Taylor, and T. Goldstein. Visualizing
the loss landscape of neural nets. In NeurIPS, 2018. 1, 2,
5,7

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang,
Xiaolin Hu, and Jun Zhu. Defense against adversarial at-
tacks using high-level representation guided denoiser. In
CVPR, 2018. 1

Xuanging Liu, Minhao Cheng, Huan Zhang, and Cho-Jui
Hsieh. Towards robust neural networks via random self-
ensemble. arXiv.org, abs/1712.00673, 2017. 1

Bo Luo, Yannan Liu, Lingxiao Wei, and Qiang Xu. To-
wards imperceptible and robust adversarial example attacks
against neural networks. In AAAI 2018. 1

Xingjun Ma, Bo Li, Yisen Wang adn Sarah M. Er-
fani, Sudanthi Wijewickrema, Michael E. Houle, Grant
Schoenebeck, Dawn Song, and James Bailey. Character-
izing adversarial subspaces using local intrinsic dimension-
ality. arXiv.org, abs/1801.02613, 2018. 1

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv.org,
abs/1706.06083, 2017. 1

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations.
arXiv.org, abs/1702.04267, 2017. 1

Matthew Mirman, Timon Gehr, and Martin T. Vechev. Dif-
ferentiable abstract interpretation for provably robust neural
networks. In ICML, pages 3575-3583, 2018. 1

Diganta Misra. Mish: A self regularized non-monotonic
activation function. In BMVC, 2020. 7, 10

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: A simple and accurate method
to fool deep neural networks. In CVPR, 2016. 1

Nina Narodytska and Shiva Prasad Kasiviswanathan. Sim-
ple black-box adversarial attacks on deep neural networks.
In CVPR Workshops, 2017. 1

Aran Nayebi and Surya Ganguli. Biologically inspired
protection of deep networks from adversarial attacks.
arXiv.org, abs/1703.09202, 2017. 1

Chalapathy Neti, Michael H. Schneider, and Eric D. Young.
Maximally fault tolerant neural networks. TNN, 3(1):14—
23,1992. 1

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

(82]

[83]

Tianyu Pang, Xian Yang, Yinpeng Dong, Hang Su, and
Jun Zhu. Bag of tricks for adversarial training. arXiv.org,
abs/2010.00467, 2020. 6

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In SP,
2016. 1

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NeurlPS Workshops, 2017. 6
Rama Chellappa Pouya Samangouei, Maya Kabkab.
Defense-GAN: Protecting classifiers against adversarial at-
tacks using generative models. /CLR, 2018. 1

Aaditya Prakash, Nick Moran, Solomon Garber, Antonella
DiLillo, and James A. Storer. Protecting JPEG images
against adversarial attacks. In DCC, 2018. 1

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan,
Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De,
Robert Stanforth, and Pushmeet Kohli. Adversarial robust-
ness through local linearization. In NeurIPS, 2019. 6

Faiz Ur Rahman, Bhavan Vasu, and Andreas E. Savakis.
Resilience and self-healing of deep convolutional object de-
tectors. In ICIP, 2018. 2

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip at-
tack: Crushing neural network with progressive bit search.
InICCV,2019. 1

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in
adversarially robust deep learning. In ICML, 2020. 1
Andrew Slavin Ross and Finale Doshi-Velez. Improving
the adversarial robustness and interpretability of deep neu-
ral networks by regularizing their input gradients. In AAAI,
2018. 1

Sayantan Sarkar, Ankan Bansal, Upal Mahbub, and Rama
Chellappa. UPSET and ANGRI : Breaking high perfor-
mance image classifiers. arXiv.org, abs/1707.01159, 2017.
1

Lukas Schott, Jonas Rauber, Wieland Brendel, and
Matthias Bethge. Robust perception through analysis by
synthesis. arXiv.org, abs/1805.09190, 2018. 1

Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang.
Ape-gan: Adversarial perturbation elimination with gan.
arXiv.org, abs/1707.05474, 2017. 1

Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard
Scholkopf, Léon Bottou, and David Lopez-Paz. Adversar-
ial vulnerability of neural networks increases with input di-
mension. arXiv.org, abs/1802.01421, 2018. 1

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus
Piischel, and Martin T. Vechev. Fast and effective robust-
ness certification. In NeurIPS, pages 10825-10836, 2018.
1

Vasu Singla, Sahil Singla, David Jacobs, and Soheil Feizi.
Low curvature activations reduce overfitting in adversarial
training. arXiv.org, abs/2102.07861, 2021. 8

Kihyuk Sohn, David Berthelot, C. Li, Zizhao Zhang, N.
Carlini, E. D. Cubuk, Alex Kurakin, Han Zhang, and
Colin Raffel. Fixmatch: Simplifying semi-supervised

[84]

(85]

(86]

(87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

learning with consistency and confidence.
abs/2001.07685, 2020. 9

Thilo Strauss, Markus Hanselmann, Andrej Junginger, and
Holger Ulmer. Ensemble methods as a defense to adversar-
ial perturbations against deep neural networks. arXiv.org,
abs/1709.03423, 2017. 1

David Stutz, Nandhini Chandramoorthy, Matthias Hein,
and Bernt Schiele. Bit error robustness for energy-efficient
dnn accelerators. In MLSys, 2021. 1,7

David Stutz, Matthias Hein, and Bernt Schiele. Confidence-
calibrated adversarial training: Generalizing to unseen at-
tacks. In ICML, 2020. 6

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Saku-
rai. One pixel attack for fooling deep neural networks.
arXiv.org, abs/1710.08864, 2017. 1

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016.
6

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fer-
gus. Intriguing properties of neural networks. arXiv.org,
abs/1312.6199, 2013. 1

César Torres-Huitzil and Bernard Girau. Fault and error
tolerance in neural networks: A review. IEEE Access, 5,
2017. 2

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan
Boneh, and Patrick D. McDaniel. Ensemble adversarial
training: Attacks and defenses. /CLR, 2018. 1

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In /CLR, 2020.
1,7,8

Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-Yu Chen, Xue Lin,
and Luca Daniel. Towards certificated model robustness
against weight perturbations. In AAAL 2020. 1

Eric Wong and J. Zico Kolter. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. In ICML, 2018. 1

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is bet-
ter than free: Revisiting adversarial training. arXiv.org,
abs/2001.03994, 2020. 6

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adver-
sarial weight perturbation helps robust generalization. In
NeurlIPS, 2020. 1, 5, 8

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan L. Yuille. Mitigating adversarial effects through ran-
domization. ICLR, 2018. 1

Greg Yang, Tony Duan, Edward Hu, Hadi Salman, Ilya P.
Razenshteyn, and Jerry Li. Randomized smoothing of all
shapes and sizes. arXiv.org, abs/2002.08118, 2020. 1
Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish
Rawat. Efficient defenses against adversarial attacks. In
AlSec, 2017. 1

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Du-
ane S. Boning, and Cho-Jui Hsieh. Towards stable
and efficient training of verifiably robust neural networks.
arXiv.org, abs/1906.06316, 2019. 1

arXiv.org,

[101]

[102]

[103]

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,
and Luca Daniel. Efficient neural network robustness cer-
tification with general activation functions. In NeurIPS,
pages 4944-4953, 2018. 1

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael I. Jordan. Theoretically
principled trade-off between robustness and accuracy. In
ICML, 2019. 1, 8

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Li zhen
Cui, Masashi Sugiyama, and Mohan Kankanhalli. At-
tacks which do not kill training make adversarial learning
stronger. arXiv.org, abs/2002.11242, 2020. 9

