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1. Converting Pixel Difference Convolution
(PDC) to Vanilla Convolution

The main goal of the conversion is to make PDC as fast
and memory efficient as as the vanilla convolution. As in-
troduced in the main paper, the formulations of vanilla con-
volution and PDC can be written as:

kxk

y:f(z,o):szxl,
=1
> wie(wi—a),

(z4,2;)EP

(vanilla convolution) (1)

y=[f(ve,0) = (PDC) (2)

where, z; and 2 are the pixels in the current input local
patch, w; is the weight in the £ x k convolution kernel.
P = {(z1,2}), (x2,2%), ..., (xm, x,,)} is the set of pixel
pairs picked from the local patch, and m < k x k.

The conversion from PDC to vanilla convolution can be
done in both the training and inference phases.

Conversion in the Training Phase.  Eq. 2 can be trans-
formed to fit the form of Eq. 1, according to the selection
strategies of the pixel pairs. Correspondingly, PDC can
be converted to vanilla convolution by firstly transforming
the kernel weights to a new set of kernel weights, followed
by a vanilla convolutional operation. We will discuss Cen-
tral PDC (CPDC), Angular PDC (APDC) and Radial PDC
(RPDC) respectively. The selection strategies of pixel pairs
in the three PDC instances are shown in Fig. 1, Fig. 2 and
Fig. 3. The transformations of the equations are as follows.

For CPDC (Fig. 1):
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Figure 1. Selection of pixel pairs and convolution in CPDC.
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For APDC (Fig. 2):
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For RPDC (Fig. 3):
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Figure 2. Selection of pixel pairs and convolution in APDC.
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Figure 3. Selection of pixel pairs and convolution in RPDC.
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The RPDC is converted to a vanilla convolution with ker-
nel size 5 x 5.

Conversion in the Inference Phase.  After training, in-
stead of saving the original weights w;, we directly save the
new set of weights w;. Therefore, during inference, all the
convolutional operations are vanilla convolutions.

2. Precision-Recall Curves on NYUD Dataset

The Precision-Reall curves of our methods and other
approaches on NYUD dataset [8] are shown in Fig. 4.
The compared methods include RCF [6], HED [9],
SE+NG+ [4], SE [2], gPb+NG [3], gPb-UCM [!] and
OFEF [5].
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Figure 4. Precision-Recall curves of our models and some com-
petitors on NYUD dataset.

3. Visualization

Edge Maps. The edge maps generated from the baseline
architecture and PiDiNet are shown in Fig. 5. Both mod-
els were trained using only the BSDS500 dataset without
the mixed VOC dataset [7]. From the figure, it is proved
that PDC can help PiDiNet effectively capture more useful
boundaries, with the ability to extract rich gradient informa-
tion that facilitates edge detection.

Intermediate Feature Maps. = We also visualize the in-
termediate feature maps extracted from PiDiNet, to qualita-
tively demonstrate the effectiveness of the compact dilation
convolution based module (CDCM) and the compact spatial
attention module (CSAM), which are shown in Fig. 6. It is
concluded that both CDCM and CSAM take a positive role
in PiDiNet on the edge detection task.
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Figure 5. For each case, Top: input and ground truth image; Middle: edge maps from stage 1, 2, 3, 4 respectively and the final edge map,
generated from the baseline architecture, Bottom: Corresponding edge maps generated from PiDiNet. Both the baseline architecture and
PiDiNet were trained only using the BSDS500 dataset [1]. Compared with the baseline, we can see that PiDiNet can detect more useful
boundaries (e.g., bangs, stairs, the contour of the tree, the characteristic textures of the car).
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Figure 6. CDCM and CSAM can further refine the feature maps with multi-scale feature extraction and the sample adaptive spatial attention
mechanism. Note that in the attention maps generated by CSAM, pixels in the background show higher intensities. This makes sense as
the background pixels after CDCM have negative values, hence they will be additionally suppressed through CSAM.
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