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A. Appendix

This appendix provides more experiment results and vi-
sualizations. Sec. A.1 presents the details of the decoder
of the motion continuity modeling module, Sec. A.2 shows
more additional experiments on self-supervised learning,
Sec. A.3 gives the training curves in more detail and
Sec. A.4 shows more qualitative results of the interpolation.

A.1. Interpolation Decoder Architecture

The architecture of the skeleton interpolation decoder is
presented in Table 1. Note that we employ different back-
bone models including ST-GCN [7], 2S-AGCN [5] and AS-
GCN [3] as our network architectures. Each network will
differ in the details of the convolution operation, however,
they all share the main operation termed “spatial-temporal
convolution” that is proposed in [7]. Uniformly, the first
four convolutional blocks reduce the frame number to ag-
gregate higher-level action features. For the last layer, we
adopt a simply modified spatial-temporal deconvolution op-
eration. Finally, the tensor with shape [25, 3, 64] can be ob-
tained from a fully connected layer, which contains the joint
position of the interpolated 64 frames.

A.2. Comparison with other methods on PKUMMD

As shown in Table 2, we compare our method with the
state-of-the-art self-supervised learning methods. All the
networks are self-pretrained on NTU dataset and then ini-
tialized the weights on PKUMMD dataset. As we can see,
our MCC method achieve the best performance and out-
perform other existing methods by a large margin, which
demonstrate the effectiveness of the proposed method.

†Corresponding authors.

Input-Shape Operation Output-Shape

[25, 256, 8]
S-GCN

[25, 128, 8]T-GCN, stride=1

[25, 128, 8]
S-GCN

[25, 128, 4]T-GCN, stride=2

[25, 128, 4]
S-GCN

[25, 128, 2]T-GCN, stride=2

[25, 128, 2]
S-GCN

[25, 96, 1]T-GCN, stride=2

[25, 96, 1]
Deconv S-GCN

[25, 192, 1]Deconv T-GCN, stride=1

[25, 192, 1] FC layer [25, 3, 64]

Table 1. The architecture of the skeleton interpolation decoder. S-
GCN indicates the spatial-convolution, and T-GCN indicates the
temporal-convolution that are both proposed in [7]. The input ten-
sor with shape [25, 256, 8] is obtained from the encoder, where
25 represents the joint number, 256 is the feature channel, and 8
means the frame number.

A.3. Training Process

To further demonstrate the process of training network
from scratch and our self-supervised learning for pre-
training, Figure 1 shows the accuracy and loss curves. It
is noticeable that when employing the self-supervised pre-
trained weights, the network can achieve higher accuracy in
different datasets with lower loss, which shows the effec-
tiveness of our self-supervised learning method.

A.4. More Visualizations

More skeleton interpolation results of different actions
are illustrated in Figure 2, which contains the action of
“brush teeth”, “stand up” and “kicking something”. As



Method Architecture PKUMMD (Acc.)

LongT GAN [8] unidirectional GRUs 44.8
MS2L [4] BiGRU 45.8

Clip Order prediction [6]CVPR’2019

ST-GCN 51.2
2S-AGCN 53.8
AS-GCN 55.7

Jigsaw puzzle recognition [2]AAAI’2019

ST-GCN 50.4
2S-AGCN 56.6
AS-GCN 55.4

pace prediction [1]CVPR’2020

ST-GCN 49.7
2S-AGCN 54.9
AS-GCN 55.8

MCC (ours)
ST-GCN 54.5

2S-AGCN 60.8
AS-GCN 58.4

Table 2. Comparison with other state-of-the-art self-supervised
methods on PKUMMD Part-II subset.

we can see, the actions are interpolated with very low er-
ror compared with the target ground-truth frames. Note that
our self-supervised learning method is not specifically de-
signed for interpolating the human skeleton.
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[8] Nenggan Zheng, Jun Wen, Risheng Liu, Liangqu Long, Jian-
hua Dai, and Zhefeng Gong. Unsupervised representation
learning with long-term dynamics for skeleton based action
recognition. In Thirty-Second AAAI conference on artificial
intelligence, 2018. 2



Figure 2. More visualizations of the skeleton action samples from the interpolation module (backbone: ST-GCN [7]) on NTU60-RGB+D
dataset. (a) Action of “brush teeth”. (b) Action of “stand up”. (c) Action of “kicking something”.


