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Table 1: Supplementary Material Overview

A. Dataset Details
We evaluate our approach using four standard video recog-

nition benchmark datasets, namely ActivityNet-v1.3 [1],
FCVID [4], Mini-Sports1M [5] and Mini-Kinetics [2]. Be-
low we provide more details on each of the dataset.
ActivityNet. We use the v1.3 split of ActivityNet dataset
which consists of more than 648 hours of untrimmed videos
from a total of 20K videos. Specifically, this dataset has
10,024 videos for training, 4926 videos for validation and
5044 videos for testing with an average duration of 117
seconds. It contains 200 different daily activities such as:
walking the dog, long jump, and vacuuming floor. We use
the training videos to train our network, and the validation
set for testing as labels in the testing set are withheld by the
authors. The dataset is publicly available to download at
http://activity-net.org/download.html.
FCVID. Fudan-Columbia Video Dataset (FCVID) contains
total 91,223 Web videos annotated manually according to
239 categories (45,611 videos for training and 45,612 videos
for testing). The categories cover a wide range of topics
like social events, procedural events, objects, scenes, etc.
that form in a hierarchy of 11 high-level groups (183 classes
are related to events and 56 are objects, scenes, etc.). The
total duration of FCVID is 4,232 hours with an average video
duration of 167 seconds. The dataset is available to download
at http://bigvid.fudan.edu.cn/FCVID/.
Mini-Sports1M. Mini-Sports1M is a subset of Sports-
1M [5] dataset with 1.1M videos of 487 different fine-grained

Arch. αinit
32-bit 4-bit 2-bit

αlr αwd αlr αwd αlr αwd

ResNet-18 4 0.01 5e-4 0.01 5e-4 0.01 5e-3
ResNet-50 2 0.1 5e-4 0.1 5e-4 0.01 6e-2

Table 2: Hyperparameters for training the any-precision
recognition network. We use separate sets of learning parameters
(learning rate, weight decay) for clipping values of each precision.

Dataset w1 w2 w3

ActivityNet 0.21 0.5 0.1
FCVID 0.11 1.0 0.1

Mini-Sports1M 0.21 0.5 0.1
Mini-Kinetics 0.21 0.3 0.1

Table 3: Hyperparameters to train the policy network.

sports. It is assembled by [3] using videos of length 2-5 mins,
and randomly sample 30 videos for each class for training,
and 10 videos for each class for testing. The classes are ar-
ranged in a manually-curated taxonomy that contains internal
nodes such as Aquatic Sports, Team Sports, Winter Sports,
Ball Sports, etc, and generally becomes fine-grained by the
leaf level. We obtain the training and testing splits from
the authors of [3] to perform our experiments. Both train-
ing and testing videos in this dataset are untrimmed. This
dataset is available to download at https://github.
com/gtoderici/sports-1m-dataset.

Mini-Kinetics. Kinetics-400 is a large-scale dataset con-
taining 400 action classes and 240K training videos that
are collected from YouTube. Since the full Kinetics dataset
is quite large and the original version is no longer avail-
able from official site (about ∼15% videos are missing), we
use the Mini-Kinetics dataset that contains 121K videos for
training and 10K videos for testing, with each video lasting
6-10 seconds. We use official training/validation splits of
Mini-Kinetics released by authors [6] in our experiments.



Model mAP (%) GFLOPs
ActivityNet

No LSTM 74.1 28.8
LSTM 74.8 28.1

Mini-Kinetics
No LSTM 46.1 26.4

LSTM 46.4 26.8

Table 4: Effect of LSTM on ActivityNet and Mini-Sports1M.

B. Implementation Details

In this section, we provide more details regarding the
implementation. We train the any-precision recognition net-
work from the full-precision recognition network pretrained
on the same dataset for 100 epochs. Then we optimize the
policy network accompanied with the well-trained (frozen)
any-precision recognition network for 50 epochs and the
policy network is initialized with the weight pretrained on
the same dataset as well. For our experiments, we use 12
NVIDIA Tesla V100 GPUs for training the any-precision
recognition network and 6 GPUSs for training the policy
network. All our models were implemented and trained
via PyTorch. In Table 2 and 3, we provide the initial value
(αinit), learning rate (αlr) and weight decay (αwd) for each
precision to train the any-precision recognition network, as
well as hyperparameters w1, w2 and w3 (in Eq. (13) in the
main paper) to train the policy network. The data augmen-
tations in our approach are based on the practices in [7].
We first randomly resize the shorter side of an image to a
range of [256, 320) while keeping aspect ratio and then ran-
domly crop a 224 × 224 region and normalize it with the
ImageNet’s mean and standard deviation to form the input
(16 × 224 × 224). The training time depends on the size
of datasets and the task. We will make our code publicly
available after the acceptance.

C. Additional Ablation Studies

Effectiveness of LSTM. We investigate the effectiveness of
LSTM for modeling video causality in the policy network
by comparing with a variant of VideoIQ without LSTM
(see Table 4). On ActivityNet and Mini-Sports1M datasets,
the variant without LSTM yields 0.7% and 0.3% lower mAP
with similar GFLOPs than VideoIQ respectively. This
demonstrates that LSTM is critical for good performance as
it makes the policy network aware of all useful information
seen so far by aggregating the sequence history.

Effect of Different Losses. Similar to Table 5 of the main
paper, we further ablate different losses on Mini-Sports1M
(see Table 5) and observe that without knowledge transfer
from a pretrained full-precision model, our method only
achieves 44.6% with similar amount of GFLOPs. It once
again demonstrates the importance of using the full-precision

Lce Lkd Le Lb Ld mAP (%) GFLOPs
✓ ✓ ✓ ✓ 44.6 26.5
✓ ✓ 46.6 58.5
✓ ✓ ✓ 46.3 28.5
✓ ✓ ✓ ✓ 46.2 26.9
✓ ✓ ✓ ✓ ✓ 46.4 26.8

Table 5: Effect of different losses on Mini-Sports1M.

Decision Space Ω mAP (%) GFLOPs
{32, 0} 43.9 28.7
{32, 4, 2} 46.1 29.3
{32, 4, 0} 43.9 33.5
{32, 2, 0} 46.0 32.9

{32, 4, 2, 0} 46.4 26.8

Table 6: Effect of different decision space on Mini-Sports1M.

model as the teacher for effective training of lower precisions.
When training without efficiency loss (by setting Le = 0),
it achieves 46.6% mAP (0.2% improvement) but with 118%
more FLOPs. Furthermore, Lb and Ld both improve the
performance with similar computational cost.

Effect of Decision Space. Similar to Table 6 in main
paper, we show the effect of decision space Ω on Mini-
Sports1M (see Table 6). We adjust the training loss to
keep their GFLOPS at the same level and we only com-
pare the differences in recognition performances. Only
skipping frames yields 43.9% in mAP (0.5% lower than
Ω = {32, 4, 2, 0}). Among all the alternatives, the best strat-
egy is to set Ω = {32, 4, 2, 0} for achieving top performance
of 46.4% in mAP with 26.8 GFLOPs.

D. Qualitative Results

In this section, we provide additional qualitative exam-
ples to visualize the learnt policy (see Figure 1). Videos are
uniformly sampled in 8 frames. VideoIQ processes most
informative frames with 32-bit precision while it skips or
uses lower precision for the less informative frames without
sacrificing accuracy (see top 4 examples in Figure 1: “Swim-
ming”, “Tractor Pulling”, “Bujinkan” and “Using Segway”).
Moreover, it uses 2-bit precision instead of 32-bit precision
(see bottom 2 examples in Figure 1: “Riding Camel” and
“Freestyle Football”) after being confident about the action.
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Figure 1: Qualitative examples. Our proposed approach VideoIQ processes more informative frames with high precision and less
informative ones with lower precision or skip them when irrelevant, for efficient video recognition. Best viewed in color.
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