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1. Introduction
This supplementary material first provides details about

the network architecture design in Sec. 2, followed by
hyper-parameter configurations and implementation details
in Sec. 3. Finally, we present more qualitative results in
Sec. 4, including an analysis of failure cases.

2. Ablation study on the architecture
The common architecture underlying most existing

methods uses a ResNet-50 backbone followed by a single
head that produces SMPL parameters. Most existing meth-
ods use an iterative approach, first introduced by HMR [9].
To arrive at the ROMP architecture in Fig. 1, we progres-
sively add/change elements of this basic design and evalu-
ate the effects in an ablation study. As shown in Fig. 2, two
main design choices of the head architecture are explored,
single head (SH) vs. separated multiple heads (MH), and
the number of convolution blocks (NB) in each head. In
this section, we first introduce the experiment settings of
the ablation study and then report the results.

2.1. Experiment settings

Architecture details. 1) SH v.s. MH: The architecture
of the single head model is presented as (b) in Fig. 2. It is
a straightforward and lightweight design, which uses a sin-
gle branch to jointly estimate the Camera and SMPL maps.
In contrast, the separated multi-head design is adopted in
Fig. 1. 2) NB: We adopt ResNet blocks (shown in Fig. 1)
as the basic unit of the head networks. We conduct an abla-
tion study to determine the proper number of blocks in each
head. The architecture is presented as (c) in Fig. 2.

Datasets. For pretraining, we take three 2D pose
datasets, COCO [15], CrowdPose [14], AICH [20] and one
detection dataset, CrowdHuman [18]. For the formal train-
ing, we take four 3D pose datasets, Human3.6M [3], MPI-
INF-3DHP [16], MuCo-3DHP [16], UP [13], and three 2D
pose datasets, COCO [15], MPII [1],LSP [5]. Especially,
we only use the 7 subjects (Subject 1, 2, 3, 4, 5, 6, and 7)
of MPI-INF-3DHP for training. Subject 8 is used for val-
idation. The test set of MPI-INF-3DHP is employed for
evaluation.

Components MPI-INF-3DHP
SH MH NB Backbone MPJPE↓ PMPJPE↓
X 1 HRNet-32 95.31 66.73

X 1 HRNet-32 95.11 65.89
X 2 HRNet-32 97.19 65.50

X 2 HRNet-32 95.30 66.32
X 3 HRNet-32 97.19 65.94

X 1 ResNet-50 105.31 69.62
X 1 ResNet-50 106.43 69.83

X 2 ResNet-50 105.37 69.12
X 2 ResNet-50 104.92 70.20
X 3 ResNet-50 105.41 71.78

Table 1. Ablation study on the architecture design. SH denotes the
single head design and MH is the separated multi-head design. NB
is the number of blocks used in each head.

Training. Firstly, we pretrain the ResNet-50/HRNet-32
model on the pretraining 2D pose datasets for 120 epochs.
The network architecture for pretraining is presented as (a)
in Fig. 2. We follow the hyper-parameter settings of Higher-
HRNet [2] during this process.

During formal training, we set the learning rate to 5e−5,
weight decay to 1e−6, batch size to 64. To achieve the best
performance of each architecture as much as possible, the
loss weights are adjusted, according to the visualization re-
sults on the validation set, to avoid the model falling into a
local minimum. Each model has been trained at least 100
epochs. We observe that the model with fewer head layers
often achieves its best performance at about 120 epochs af-
ter several rounds of adjusting hyperparameters, while the
model with more head layers often achieves its best perfor-
mance at about 50 epochs.

2.2. Result analysis

In Tab. 1, we present the results of different architecture
designs. The experiments are performed with two kinds
of backbone, HRNet-32 and ResNet-50. In this settings,
HRNet-32 performs better than ResNet-50. Just like its su-
perior performance of fine-tunning on 3DPW (Tab. 3 in the
main paper), HRNet-32 once again proves its excellent abil-
ity to fit a specific data domain on MPI-INF-3DHP.



Figure 1. Architecture of the proposed ROMP.

Figure 2. Architecture of the pre-train model.

Using the same backbone, the performance gap be-
tween different head architecture designs is relatively small.
Among these designs, we find out that 1) compared with the
SH, the disentangled multi-head design performs better in
the most cases and is prone to train; 2) regarding the NB,
setting n = 2 is a better choice to balance accuracy and
training time.

Fig. 1 shows the details of the architecture. ROMP
adopts a fully convolutional multi-head design. Compared
with previous methods (like [9, 11, 12]), we do not need
to use iterative regression. It is interesting because previ-
ous methods rely on this iterative updating to achieve good
pose accuracy. ROMP has a harder task than these previ-
ous methods that are given a cropped image of the person.
ROMP needs to detect people, sort out what image features
belong to which person, and estimate the pose. By learning
from a holistic view of the whole image, ROMP is forced to
learn more about people and how they appear in images. For
example, people at the edge of the image usually tend to be
truncated. In addition, the holistic view provides the oppor-
tunity of learning the interaction between multiple people,
which helps handle the crowded scenes. Since ROMP has
to solve the pose-estimation problem given an image of the

whole scene, it must learn more distinguishable features to
solve the task. We posit that these more powerful features
enable it to estimate the body shape and pose without itera-
tion.

3. Implementation Details

3.1. Training Strategy

The basic settings of pretraining and formal training are
introduced in Sec. 2.1. Here, we introduce the detailed
strategy we used for training ROMP. Our training uses 4
NVIDIA P40 GPUs with a batch size of 128. We adopt the
Adam optimizer [10] for training. To avoid the multi-step
training and adapt to people of diverse scales, we take both
the cropped single-person images and the whole images as
input. The ratio of loading the entire images is first set to
10% in the first 60 epochs, and then adjusted to 60% in the
remaining 60 epochs. Especially, to accelerate the training
and reduce the GPU memory usage, we use the automatic
mixed precision (AMP) training of Pytorch [17].

3.2. Effect of hyper-parameter configurations dur-
ing inference

ROMP has several hyper-parameters that can be adjusted
during inference to adapt to different scenes, particularly
the confidence threshold tc of the Body Center map and the
maximum number of people in an image, N . The confi-
dence threshold tc is used to filter out the detected people
with the confidence value lower than tc. Similarly, we set
the max person number N to take the top N detected peo-
ple (sorted by their confidence value on the Body Center
map). Changing these parameters only affects the number
of output bodies and does not require retraining the model.

We observe that a higher tc filters out inaccurate/un-
trusted predictions, while a lower tc leaves more detection
results. The setting of the max person number N follows
the same rule. The qualitative ablation study in Fig. 3 illus-
trates this conclusion. For evaluation on all benchmarks, we
have set tc = 0.2 and N = 64 for a fair comparison.



Figure 3. Qualitative ablation study of the confidence threshold tc, on a crowded image.

Sequence Name Frame Ranges
downtown bus 00 1620-1900
courtyard hug 00 100-500
courtyard dancing 00 60-370
courtyard dancing 01 60-270
courtyard basketball 00 200-280
courtyard captureSelfies 00 500-600

Table 2. Video sequences of the person-occluded subset, 3DPW-
PC, in 3DPW.

3.3. Depth Ordering

For better visualization, we attempt to approximate the
depth ordering between the estimated multi-person body
meshes to render the meshes onto the original 2D images. In
detail, we construct a depth ordering map to determine the
visible meshes in front, using 2D body scale and center con-
fidence as the cue. First, we sort by the body center confi-
dence value from largest to smallest. Second, for each body
mesh, we compute the 2D area of the body projected onto
the image; this gives an approximate measure of its scale.
Finally, we adjust the visible mesh at each position accord-
ing to their 2D areas. Specifically, at a certain position, if
the area value of the invisible body mesh is greater than the
currently visible body mesh by a threshold, we swap their
positions. In this way, we bring to the front, the body mesh
that occupies a larger area on the image plane. This is an
approximate solution and future work should explore an in-
tegrated solution for depth ordering during inference.

3.4. Datasets

3DPW-PC and 3DPW-OC are the subsets of the
3DPW [19] dataset that are used to evaluate the per-
formance under person or object occlusion respectively.
3DPW-NC is simply the rest images in the 3DPW. 3DPW-
PC contains 1314 frames of 6 person-occluded video se-
quences. They contain severe person-person occlusion
cases with at least two-people overlapping. Details are pro-
vided in Tab. 2. Following Zhang et al. [21], 3DPW-OC
contains 23 object-occluded video sequences. Please refer
to [21] for the details.

Crowdpose [14] is a crowded dataset with 2D pose
annotations. It contains an abundant variety of person-

person and person-object occlusion. Specifically, it con-
tains 20,000 images with about 80,000 persons. We employ
their default splits with 9,963 samples for training, 7,991
test samples, and 1,997 validation samples.

3DOH50K [21] is a 3D human occlusion dataset. In the
image, the human body is occluded by various objects, such
as a laptop computer, box, chair, etc. It contains 50,310
images for training and 1,290 images for testing. It is used
to evaluate the performance under object occlusion.

MPI-INF-3DHP [16] is a single-person multi-view 3D
pose dataset. It contains 8 actors performing 8 activities.
Over 1.3M frames are captured from all 14 cameras. Ex-
cept for the indoor RGB videos of a single person, they also
provide MATLAB code to generate a multi-person dataset,
MuCo-3DHP, via mixing up segmented foreground human
appearance.

COCO [15], MPII [1], LSP [5], LSP Extended [6],
and AICH [20] are in-the-wild 2D pose datasets. We use
them for training. Especailly, we use the pseudo SMPL an-
notations of part images generated by [8, 12] for training.

3.5. Evaluation Metrics

Per-vertex error (PVE) measures the average Euclidean
distance from the 3D body mesh predictions to the ground
truth after aligning the pelvis keypoints in millimeters.

The mean per joint position error (MPJPE) measures
the average Euclidean distance from the 3D pose predic-
tions to the ground truth in millimeters. The predictions are
first translated to match the ground truth. Generally, they
are aligned by the pelvis keypoint for comparison.

Procrustes-aligned MPJPE (PMPJPE) is MPJPE af-
ter rigid alignment of the predicted pose with ground truth
in millimeters. It is also called as the reconstruction error.
Through Procrustes alignment, the effects of translation, ro-
tation, and scale are eliminated, thus PMPJPE focuses on
evaluating the accuracy of the reconstructed 3D skeleton.

3D PCK & AUC. 3D PCK is the 3D version of the
2D PCK metric, which computes the Percentage of Correct
Keypoints. Following the ECCV 2020 3DPW Challenge,
the threshold of successful prediction is set to 50mm. Cor-
respondingly, the AUC, which is the total area under the
PCK-threshold curve, is calculated by computing PCKs by
varying the threshold from 0 to 200mm.

The mean per joint angle error (MPJAE) measures



Figure 4. Qualitative results on 3DPW [19], 3DOH50K [21], and CMU Panoptic [7] from top to down.

the angle between the predicted joint orientation and the
ground truth orientation in degrees. The orientation differ-
ence is measured as the geodesic distance in SO(3). Specif-
ically, only the angles of four limbs and the root are used
for evaluation.

Procrustes-aligned MPJAE (PMPJAE) measures the
MPJAE after applying the rotation matrix, obtained from
the Procrustes alignment, on all predicted orientations. As
above, it neglects the global mismatch.

Average Precision (AP) measures multi-person 2D pose
accuracy. We employ it to measure the accuracy of the
back-projected 2D body keypoints for evaluating the per-
formance on crowded scenes. A detected keypoint can-
didate is considered to be correct (true positive) if it lies
within a threshold of the ground-truth. Each keypoint sep-
arately calculates its correspondence with the ground-truth
poses. AP correctly penalizes both missed detections and
false positives. In [15], for multi-person pose estimation,
AP is further designed by defining the object keypoint sim-
ilarity (OKS) that is a similarity measure between the pre-
dictions and the ground truth. Analog to IoU in object de-
tection, OKS is defined as

OKS =

∑
i exp(−d2i /2s2k2i )δ(vi > 0)∑

i δ(vi > 0)
, (1)

where di is the Euclidean distance between the detected
keypoint and the corresponding ground truth, vi is the
ground-truth visibility flag, s is the person scale, and ki is
a per-keypoint constant that controls falloff. For each key-
point the OKS ranges between 0 and 1.

Given the OKS over all labeled keypoints, average pre-
cision (AP) and average recall (AR) can be computed. By

tuning OKS values, the precision-recall curve can be cal-
culated, and AP and AR at different OKS can throughly
reflect the performance of the testing algorithms. Here, we
adopt AP0.5 (AP at OKS = 0.50) and AR0.5 for evalua-
tion.

4. Qualitative Results

First, in Fig. 4, we present some qualitative results on
evaluation benchmarks that are representative of our re-
sults. Next, we present more results on in-the-wild images
in Fig. 5. Finally, in Fig. 6, we present some failure cases
in estimating depth ordering, detection, and 3D pose. Ad-
ditionally, we also present results of CRMH [4] on these
failure cases for comparison.

Discussion of failure cases. Fig. 6 shows the perfor-
mance of ROMP in estimating the depth order for com-
plex scenes of overlapping people. It illustrates that our
body-level depth ordering is limited in cases of extreme
crowding with complex depth relationships. CRMH [4] is
a Faster-RCNN-based multi-person state-of-the-art method
that supervises mesh interpenetration and depth ordering
at the vertex level. It has advantages for determining the
multi-person depth ordering in crowded scenes. In contrast,
ROMP produces more robust and accurate pose estimation
in crowded scenes. In future work, we intend to develop a
fine-grained depth estimation approach to tackle this prob-
lem.

Fig. 6 also shows some extremely challenging images
in terms of pose and occlusion. Images like them clearly
challenge the state of the art but may also be challenging
for humans to perceive.
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Figure 5. Qualitative results on in-the-wild images.



Figure 6. Failure cases on estimating depth ordering, 3D pose, and detection results in extremely challenging scenes.


