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Overview
• Sec. 1. Experimental Details: implementation details for all experiments

• Sec. 2. Additional Baseline: additional baseline for multi-task learning

• Sec. 3. Additional Qualitative Results: comparisons among qualitative results produced by different methods

1. Experimental Details
Here, we report implementation details for our experiments, which are based on the existing works [5, 2, 12].

Common hyperparameters. The common hyperparameters are used throughout our experiments, unless otherwise stated.
Specifically, we use Adam optimizer [3] to optimize all models. The initial learning rate (lr) for the decoder is 1e−4

while we set lr to be a smaller value of 1e−6 for the encoder (ResNet-18 pretrained on ImageNet [9]), in order to keep
the generalizability of the features output from encoder. The learning rate is reduced by half if the validation loss doesn’t
reduce for 10 epochs, i.e., ReduceLROnPlateau. A single Tesla GPU is used for all experiments. Tasks are optimized in an
epoch-wise manner, i.e., for each epoch one task finishes training and then another task starts training. The sequence of tasks
being trained is random for each epoch. For augmentations, we use random horizontal flips, random rotation, and random
cropping. For both training and test, images are normalized by subtracting the mean values of [0.485, 0.456, 0.406], and
divided by standard derivation of [0.220, 0.224, 0.225]. The input for models are resized to 512×512. For evaluation on all
tasks, single test image is used.

Hyperparameters for PASCAL-Context. All models on PASCAL-Context [7] are trained for a maximum of 130 epochs.
The batch size of 16 is used for training.

Hyperparameters for NYUD-Context. All models on NYUD [10] are trained for a maximum of 230 epochs. The batch
size of 8 is used for training.

Loss functions and weights. As a common practice for existing multi-task methods [5, 2, 11], different tasks use different
loss functions, with different weights. In our experiments, we use the same losses and weights as [5, 2]. Specifically, for
edge detection (Edge), we use the weighted binary cross-entropy loss, for which edge pixels are scaled with a weight of 0.95
and non-edge pixels are scaled with 0.05 since the number of non-edge pixels is much more than the number for edge pixels.
For both semantic segmentation (SemSeg) and parts segmentation (Parts), normal cross entropy loss is used. For saliency
detection (Sal), the predictions are penalized using normal binary cross-entropy loss. For both surface normals (Normals)
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and depth estimation (Depth), we use L1 loss. Before computing the L1 loss for Normals, the predictions from the network
are normalized to unit vectors. The loss weights for Edge, SemSeg, Parts, Sal, Normals, and Depth are 50, 1, 2, 5, 10, and 1,
respectively.

Evaluation. To evaluate edge detection, the maximum allowed mislocalization of the optimal dataset F-measure (odsF) [6]
is set to be 0.0075 for both PASCAL-Context and NYUD, following [8]. For evaluation of other tasks, we follow the
standard metrics.

Details for Taskonomy. For Taskonomy dataset [12], we customize our method on following tasks: colorization, inpainting,
autoencoding, denoising, 2D keypoints, 2D segment, 2D edges, 3D keypoints, 2.5d segment, curvature, occlusion edges,
reshading, z-depth, distance, surface normals, semantic segmentation, object class, scene class, room layout, and vanishing
point. For details of each task, we refer to [12]. The original Taskonomy dataset contains around 4.6 million images (indoor
scenes) for 537 buildings. Each image has annotations for all tasks and semantic information is distilled from models trained
on ImageNet [9], MS COCO [4], and MIT Places [13]. In our experiments, we use a small subset, which has 9,464 images
from 1 building (Cauthron). More details (image-level statistics, point-level statistics, camera-level statistics and model-level
statistics) about the dataset can be found from official Taskonomy website. The optimizer and learning rate are the same as
those used for PASCAL-Context and NYUD. Tasks are also optimized in an epoch-wise manner. A single Tesla V100 GPU
with 32G memory and batch size of 40 are used. The input for our model is resized to 256×256. The training is terminated
after 150 epochs.

For choices of loss functions, we follow the work [12]. Specifically, for classification tasks (semantic segmentation,
object class, and scene class), we use cross entropy loss. For most regression tasks (colorization, inpainting, autoencoding,
denoising, 2D keypoints, 2D edges, 3D keypoints, curvature, occlusion edges, reshading, z-depth, distance, and surface
normals), we use L1 loss. For remaining regression tasks (room layout and vanishing point), we use mean square error
(squared L2) loss. For unsupervised tasks (2D segment and 2.5d segment), we use triple metric loss [1]. All losses have
equal weight.

2. Additional Baseline

We report a simple baseline for multi-task learning, which is to use a shared encoder and decoder, but have different heads
(last convolutional layer) for different tasks. Hence the baseline is named “Multi-head”. The comparisons are shown in
Table 1. As expected, the baseline performs badly, with average performance drop of 9.56%, because tasks are interfering
each other heavily. Our method largely improves the baseline, with average performance drop of 0.30%, while only increasing
the number of parameters by 0.6 million. Since Multi-decoder baseline has task-specific decoder for different tasks, it is much
better than Multi-head (4.32% vs 9.97%). However, it uses much more parameters (43.9 million) and the parameters scale
with respect to number of tasks.

Table 1: We compare with Multi-head baseline on PASCAL-Context. It shows serious task interference when sharing most
parameters of the network among tasks. Our proposed method largely outperforms the Multi-head baseline while only
increasing the model size by a small margin.

Method Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓ # params
Single-task 71.3 64.3 55.5 16.3 62.9 - 88.7M
Multi-head 71.1 54.9 50.5 19.4 59.6 9.56 17.7M

Multi-decoder 72.2 55.4 55.5 16.8 59.1 4.32 43.9M
Ours 70.6 64.2 55.0 16.3 63.3 0.30 18.3M

3. Additional Qualitative Results

More qualitative results are shown in Fig. 1. It shows that our method outperforms baseline (Task-specific INs), especially
on high-level tasks such as semantic segmentation, human parts segmentation, and saliency detection.
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Figure 1: Qualitative results. We show more visual comparisons between our model with baseline (Task-specific INs). From
left to right: input image, edge prediction, semantic segmentation, parts segmentation, surface normals, and saliency.
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