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This document is organized as follows. In Sec. A, we
discuss why we consider geometry verification, query ex-
pansion, and aggregated selective match kernel as the base-
line methods. In Sec. B, we provide an ablation study on
using different numbers of local descriptors in geometry
verification (GV) [9] and RRT. In Sec. C, we perform ex-
periments using SuperPoint [5] as the feature extractor for
RRT, and compare with SuperGlue [11] on Stanford Online
Products [12]. In Sec. D, we perform experiments using
ResNet101 [6] as the CNN backbone. In Sec. E, we visual-
ize the keypoint correspondences learned by RRT. In Sec. F,
we discuss the limitation of the proposed method. Finally,
in Sec. G, we present more qualitative examples.

The names of the training images sampled from GLDv2,
as discussed in Section 4.1 of the main paper, are in a sepa-
rate document.

A. Appropriate baselines

We consider geometry verification [9] and αQE [3] as
the main baselines as they share the same spirit with our
method: they make better use of the test-time informa-
tion. When comparing the query and target images, geome-
try verification attends to different sub-regions of the query
image when the target image is different, and vice versa,
which is very similar to the proposed Reranking Transform-
ers (RRTs). αQE also leverages test-time knowledge, but
relies on analyzing the local affinity graph created during
testing. We believe incorporating test-time knowledge is
the key motivation of image reranking. It also distinguishes
our method from most of the previous approaches that focus
on feature learning. Note that we use pretrained and fixed
feature representation in most of our experiments.

Fig. 1 provides an intuitive example of the partial-
matching cases. In this example, the target images are some
crops of the query. We believe the global descriptor + cosine
similarity paradigm is not ideal for this case, as no matter
how large is the global descriptor, it contains irrelevant in-
formation that hinders the cosine similarity measurement.

Aggregated Selective Match Kernel (ASMK) [13] was

Figure 1. An example where the target images are some crops of
the query. In this case the global descriptor + cosine similarity
retrieval paradigm may not be ideal.

previously used as a global retrieval approach instead of an
image reranking approach. Specifically, it proposes to cre-
ate a set of new filters (i.e. visual codebook) by clustering.
It then remaps/aggregates the local descriptors of each im-
age into a global vector. We perform experiments on ASMK
as it also relies on local descriptors.

B. Ablation on the number of local descriptors
In the DELG model, for each image, a maximum of 1000

local descriptors are extracted for geometric verification. In
our experiment, we observe that for most of the images,
the number of local descriptors is close to 1000. For ex-
ample, on the sampled GLDv2 training set, the query and
gallery sets of Revisited Oxford (ROxf) [10], DELG ex-
tracts 955/759/987 local descriptors per image on average.

We perform an ablation experiment by setting the maxi-
mum number of local descriptors used for each image to dif-
ferent values. The DELG model [2] used in this experiment
is pretrained on the “v2-clean” split of Google Landmarks
v2 (GLDv2) [15]. For purposes of comparison, we include
the results of geometry verification (GV) and the proposed
method (RRT). We report the mAP scores on Revisited Ox-
ford (ROxf) in Table 1.

Both GV and RRT benefit from using more local descrip-
tors in general. Nevertheless, the performance of RRT sat-
urates at 500 local descriptors. As the local descriptors are



# Local Medium Hard
Desc. GV RRT GV RRT

200 72.1 76.7 48.3 58.9
400 75.2 77.6 53.8 58.6
500 75.7 78.1 53.4 60.2
600 77.4 77.9 55.9 59.6
800 77.9 76.9 56.7 57.4
1000 78.3 78.1 57.9 60.4

Table 1. Ablation on the number of local descriptors used per im-
age. We compare the proposed Reranking Transformer (RRT)
model to geometric verification (GV) on Revisited Oxford [10].
The mAP scores on the Medium and Hard setups are reported.

Method R@1 R@10 R@100

Global-only 32.8 45.4 60.5

SuperGlue [11] 45.5 54.6 60.5

RRT (w pos, frozen) 47.3 56.5 60.5
RRT (w/o pos, frozen) 50.2 57.9 60.5
RRT (w/o pos, finetuned) 51.9 59.0 60.5

Table 2. Comparison to the pretrained SuperGlue model [11] on
Stanford Online Products [12], using SuperPoint [5] as the CNN
backbone. The SuperGlue model is pretrained on ScanNet [4].
The R@K (K =1, 10, 100) scores on the SOP [12] test set are
reported. Note that as only the top-100 neighbors are reranked,
the R@100 scores remain unchanged for all the models.

extracted from seven image scales, we conjecture that in
each image there are descriptors extracted from the same
location, thus providing duplicate information. To verify
this, we compute the number of distinct local descriptors
extracted from different grid locations. In particular, we as-
sign each local descriptor xl,i to a grid location (gu, gv) by
(gu, gv) = (⌊u/16⌋, ⌊v/16⌋). Here (u, v) is the coordi-
nate of xl,i provided by the DELG model, 16 is the stride of
the convolutional feature map where xl,i is extracted from.
We then group the descriptors sharing the same grid loca-
tion as a distinct descriptor. We observe that, the number
of distinct local descriptors is significantly smaller than the
number of all local descriptors per image. For example, on
the sampled GLDv2 training set, the query and gallery sets
of Revisited Oxford (ROxf), the numbers of distinct local
descriptors per image are 585/465/655 on average.

When using the same number of local descriptors, RRT
outperforms GV in four of the six experiments on the
Medium setup, and consistently outperforms GV on the
Hard setup.

C. SuperPoint as the CNN backbone.

In the main paper, we compare Reranking Transformer
(RRT) with SuperGlue [11] on Revisited Oxford/Paris, but
the feature extractors used for the two models are different:
ResNet50 for RRT, SuperPoint [5] for SuperGlue. In this
experiment, we use SuperPoint [5] as the feature extractor
for RRT, so that it has the same backbone architecture as
SuperGlue. We compare the new model with SuperGlue on
Stanford Online Products [12]. We also explore finetuning
the SuperPoint backbone (we tried finetuning SuperPoint
on Google Landmarks v2-clean [15] but found it requires
much more computing resources than we can afford). The
SuperGlue model in this experiment is pretrained on Scan-
Net [4]. ScanNet is a large-scale dataset that contains 2.5
million images of 1513 indoor scenes. Both SuperGlue and
our method take a 320x320 grayscale image as input. We
extract the global descriptor by averaging all the local re-
sponses, and sample the top-500 local descriptors for all the
models. We also investigate the benefit of using the position
embedding for this task. The training and evaluation set-
tings remain the same as in the SOP experiment presented
in the main paper. We do not finetune SuperGlue on SOP as
SOP does not include pixel-level annotations.

As shown in Table 2, reranking by either SuperGlue or
RRT can significantly improve the retrieval performance.
RRT outperforms SuperGlue with a frozen SuperPoint
backbone. Interestingly, RRT does not benefit from the
position embedding in this task, as is also the case in the
DELG experiment. On the other hand, we observe that the
position embedding is helpful in the SOP experiment of the
main paper, where the descriptors of all the grid positions
are used. We conjecture that the keypoints sampling may re-
sult in imbalanced sampled positions that potentially hinder
the training. Finally, finetuning the SuperPoint backbone
leads to the best performance.

D. ResNet101 as the CNN backbone.

Following [2], we perform experiments using ResNet101
as the CNN backbone. We train the Reranking Transformer
on two extra sets of image descriptors: the DELG R101
descriptors pretrained on Google Landmarks (GLD) v1 [8]
and v2-clean [15]. The training and evaluation settings re-
main the same as the main experiment on ResNet50, ex-
cept that we also clip the gradient with a maximal norm of
0.1, and find that it can stabilize the training and lead to
better performance. Here we compare our model with ge-
ometry verification [9] and SuperGlue [11] (pretrained on
MegaDepth [7]) on Revisited Oxford/Paris [10], as shown
in Table 3.

When evaluated on the “v1” descriptors, our method per-
forms favorably to both geometry verification and Super-
Glue on all the settings. When evaluated on the “v2-clean”



Method Desc. # local Desc. Medium Hard
version desc. dim. ROxf RPar ROxf RPar

DELG global R101-v1 0 - 73.2 82.4 51.2 64.7

GV R101-v1 1000 128 78.5 82.9 59.3 65.5
SuperGlue SuperPoint 500 256 74.6 82.5 51.7 62.5
SuperGlue SuperPoint 1024 256 76.9 82.9 57.2 64.7
RRT (ours) R101-v1 500 128 78.8 83.2 62.5 68.4

DELG global R101-v2-clean 0 - 76.3 86.6 55.6 72.4

GV R101-v2-clean 1000 128 81.2 87.2 64.0 72.8
SuperGlue SuperPoint 500 256 77.1 86.8 55.5 69.3
SuperGlue SuperPoint 1024 256 79.7 87.1 62.1 71.5
RRT (ours) R101-v2-clean 500 128 79.9 87.6 64.1 76.1

Table 3. Comparison to geometric verification [9] and Super-
Glue [11] on Revisited Oxford/Paris [10] using ResNet101 [6]
as the backbone. The SuperGlue model is pretrained on
MegaDepth [7] with SuperPoint [5] as the backbone. The mAP
scores on the Medium and Hard setups are reported.

descriptors, our method is inferior to geometry verification
on ROxf-Medium but performs favorably to geometry ver-
ification and SuperGlue on the rest settings.

E. Visualizing the correspondences
Following the previous instance recognition [14] and im-

age matching [11] works, we visualize the correspondences
learned by RRT in Fig. 2. We extract the attention scores
from the last transformer layer (i.e. ZC) of RRT. Correspon-
dences are computed by solving a linear sum assignment
problem [1] using the attentions as the affinity. The exam-
ples show that RRT is not good at learning the pixel-wise
correspondences of keypoints. It also indicates that rather
than estimating the local correspondences, RRT learns dis-
tinct knowledge to compute the similarity of images.

F. Limitation
Interpretability. Compared to the homography that ex-

plicitly models the alignment of the image-pair, the simi-
larity score predicted by our model is less interpretable. In
the future, we’d like to extend the work to learning more
visual relation concepts, e.g. homography, dense matching,
optical flow, which may lead to more interpretable results.

Domain shift. In the DELG [2] experiment, our method
is trained on Google Landmarks v2 [15] and tested on Re-
visited Oxford/Paris [10]. In the SOP [12] experiment, the
training and test sets have no overlapping instance cate-
gories. Both experiments demonstrate that the proposed
Reranking Transformer can transfer the knowledge across
different instance categories to a certain extent. On the other
hand, similar to all learning-based approaches, our method
might have difficulty in handling large domain shifts. It is
also a major challenge for most of the recent approaches as
another key component of the image retrieval pipeline, the
feature extractor, may also suffer from domain shift. Learn-

Figure 2. Visualization of the correspondences estimated by a
trained RRT model (RRT-R50-v2-clean). Each row shows a pair
of matching images. Two keypoints with the same color and scale
are considered as a correspondence.

ing transferable feature representation/matching could be an
interesting topic for future research.

G. More qualitative examples
In Fig. 3, we provide qualitative examples on Stanford

Online Products [12]. Here, we compare the results from
the global-only model (CO) and the proposed model (CO +
RRT (finetuned)). In particular, we showcase the examples
of rigid objects (e.g. coffee maker, kettle) and deformable
objects (e.g. stapler, lamp). The proposed method outper-
forms the global-only retrieval on challenging cases such as
partial-matching (example (A)(C)(D)), articulated objects
(example (E)(F)), and irrelevant context (example (B)).

In Fig. 4, we provide reranking examples produced by
geometry verification and the proposed Reranking Trans-
former on Revisited Oxford/Paris [10]. It is shown that,
compared to geometry verification, the proposed method
performs favorably when large viewpoint variations are
present. For example, the queries in example (A) and (B)
represent the same landmark but exhibit a large viewpoint
change. While geometry verification predicts two different
sets of top neighbors, our model predicts the same set of
top ranked images for the two queries. Example (E) and (F)
show failure cases of our model.



Figure 3. Qualitative examples from Stanford Online Products [12]. For each query, the top-3 neighbors predicted by the global-only
retrieval and the proposed Reranking Transformer are presented. Correct/incorrect neighbors are marked with green/red borders.



Figure 4. Qualitative examples from Revisited Oxford/Paris [10]. For each query, the top-3 neighbors predicted by geometry verification
and the proposed Reranking Transformer are presented. Correct/incorrect neighbors are marked with green/red borders.
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