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Appendices

A. Additional Ablation Studies
A.1l. Boundary Attentive Module

Study on attentive representations. To further analyze
the design of the boundary-attentive module, we perform
ablations on projection placement (i.e., location of MLP)
and boundary enhancement methods. For projection place-
ment, we consider the alternatives of pre-enhancement and
post-enhancement. For boundary enhancement methods,
we also tried concatenating boundary weights with features
along the channel dimension. Results of Table A show that
pre-enhancement projection has a better performance and
multiplication enhancement outperforms concatenation en-
hancement. We analyze that pre-enhancement projection
provides a more compact representation for boundary en-
hancement and attention introduces a more direct and ex-
plicit feature enhancement strategy.

Table A. Ablation study on MLP encoders on THUMOS 14, mea-

sured by AR@AN.

Projection Boundary
placement enhancement

@50 @100 @200 @500

Pre multiply 41.52 4932 5641 6291
Post multiply 38.81 4736 5486 62.30
Pre concat 37.92 4533 5212 60.86

Study on temporal positional embedding in encoder. In
this section, we show the importance of temporal positional
embedding in the boundary attentive module. We experi-
ment with removing positional embedding at MLP encoder
or directly adding it into encoder. We contend that con-
catenating positional embedding with video features explic-
itly gives the encoded features the relative order of the se-
quence, and simplifies the difficulty of proposal generation
by having temporal locations encoded in the features. The
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results in Table B show that the model performance de-
creases by 4.4% on AR@50, without temporal positional
embedding in encoder.

Table B. Ablation study on position embedding of MLP encoder
on THUMOS14, measured by AR@AN.

Positional embedding

@50 @100 @200 @500

in encoder
w/o 37.07 45.05 51.58 58.31
w/ 41.52 4932 5641 6291

Effect of feature receptive field on MLP encoder. Table C
is an extension of Table 4 in Section 4.3 to prove that the
over-smoothing effect of encoder self-attention causes per-
formance drop. We extend our experiment to alleviate the
possibility that features with smaller receptive field boosts
the performance in general. By comparing MLP encoder
performance of input features with receptive field size of
16 and 64, we conclude that smaller receptive field would
decrease the performance of MLP encoder. The increase
of performance with Transformer encoder is because that
smaller receptive field reduces the over-smoothing effect for
Transformer encoder.

Table C. Ablation study on the effect of feature receptive field on
MLP encoder on THUMOS 14, measured by AR@AN.

Size of
Receptive field ‘ @50 @100 @200 @500

64 41.52 49.32 5641 6291
16 39.56 4736 53.82 60.47

A.2. Relaxed Transformer Decoder

Study on the relaxation mechanism. We present the two-
step “top-1 to top-k” matching scheme. In our strategy,
we first train with the strict bipartite matching criteria to
generate sparse predictions, then fine-tune with the relaxed
matching scheme to improve the overall recall. The first
step of our strategy is necessary because it makes the pos-
itive samples sparsely distributed and minor-overlapped,
thus the model is free of NMS.



In the fine-tuning phase, we freeze the modules except
for binary classification and boundary embeddings. Specif-
ically, we calculate tloU between targets and predictions,
and employ three different settings of the relaxation mech-
anism. First, we mark predictions with tloU higher than a
threshold as positive samples and get an updated matching
permutation o’. We calculate both classification and local-
ization loss according to the updated assignment o’. Sec-
ond, only loss for the binary classification head is calculated
with ¢’. The target of this relaxation setting is to improve
the quality measurement (confidence) of positive (but not
optimal) proposals, and stabilize the distribution of optimal
predictions. The last one is assigning the closest prediction
of each groundtruth as positive elements (predictions of bi-
partite matching are not necessarily the geometrically clos-
est), and calculate losses on this updated assignment o’/. As
Table D illustrates, the results of all three settings are close,
demonstrating the influence of the relaxation mechanism is
robust to settings (rule and scope).

With the relaxation mechanism, our model witnesses an
evident improvement on AR and AUC. With the optimal
bipartite matching, RTD-Net predicts proposals of bipartite
matching (top-1 proposals) well, while it suppresses several
other predictions around the groundtruth (top-k proposals),
which results in a decrease of AR at large AN and over-
all AUC. In the fine-tuning phase, our model improves the
scoring of top-k proposals with the relaxation mechanism,
and the performance of top-1 proposals is not affected. As a
result, the relaxation mechanism boosts the overall perfor-
mance of RTD-Net.

Similar to us, [10] exploits a “stop-grad” operation,
namely they freeze the FCOS detector [60] and train their
PSS head in the fine-tuning phase. The difference is
that [10] firstly makes top-k predictions well and then learns
to predict top-1 proposals. RTD-Net exploits a “top-1 to
top-k” strategy, while [10] leverages a “top-k to top-1”
scheme. Both of them aim to optimize the procedure of la-
bel assignment at the cost of removing heuristic NMS, and
markedly reduce the inference time.

Table D. Ablation study on the rule of relaxation mechanism on
ActivityNet-1.3 validation set, measured by AR@AN and AUC.

Rule ‘ Scope ‘ AR@]1 AR@100 AUC
None None 32.73 71.88 65.50
threshold | cls +1loc | 33.05 73.21 65.78
threshold cls 33.10 73.12 65.77
topl cls+loc | 32.95 73.25 65.77

Study on temporal positional embedding in decoder. Ex-
plicit temporal positional embedding also plays a key role in
the relaxed transformer decoder. We experiment with no po-
sitional embedding, add positional embedding at encoder-
decoder attention input and similar to detr, add positional
embedding only at attention. As shown in Table E, adding

positional embedding at attention achieves the best perfor-
mance. RTD-Net achieves 37.43% on AR@50 without
positional embedding in the decoder, which decreases by
about 4%. Adding positional embedding at input causes
performance drop as well, by 2.0% on AR@50.

Table E. Ablation study on position embedding of transformer de-
coder on THUMOS 14, measured by AR@AN.

Positional embedding‘ @50 @100 @200 @500

None 37.43 4601 5390 61.32
At input 39.53 47.13 5383 61.67
At attn. 41.52 4932 5641 6291

Study on the number of decoder layers. We conduct ex-
periments on the number of decoder layers and the results
are displayed in Table F. RTD-Net achieves the best perfor-
mance with 6 decoder layers, in terms of AR@AN. When
the number of decoder layers increases from 1 to 2, it im-
proves AR@50 by around 6.2, but this improvement de-
creases to 1.8 when the number of decoder layers increases
from 2 to 3.

Table F. Ablation study on the number of decoder layers on THU-
MOS14, measured by AR@AN.

Number of decoder layers‘ @50 @100 @200 @500
1 32776 4293 51.09 58.19

2 3892 4747 53.14 60.11
3 40.71 47.57 53.84 60.30
6 41.52 4932 5641 6291
9 3836 46.70 5370 60.01

A.3. Non-Maximum Suppression

In Table G, we conduct experiments on RTD-Net with
and without NMS, and observe similar results. NMS is not
necessary in RTD-Net because the predictions are relatively
sparse and minor-overlapped with our two-step training
strategy (details in Appendices A.2). In contrast, BSN [5]
and BMN [4] generate highly overlapped proposals with
similar confidence, as shown in Figure G of Appendices.
Therefore, NMS is needed for these dense proposal genera-
tors to suppress such proposals.

Table G. Ablation study on non-maximum suppression on THU-
MOS14, measured by AR@AN.

Method ‘ @50 @100 @200 @500
RTD-Net 4152 4932 5641 6291
RTD-Net+SNMS | 42.02 4940 5498 61.16

B. Visualization

Visualization of boundary-attentive representations.
Figure A(a) shows the pattern for input video feature. Ver-
tical line patterns are visible in input features, indicating
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Figure A. (a) is visualization of input short-term feature of a randomly sampled video segment, this feature has a receptive field of 64
frames; (b) is visualization of starting and ending attentive features. Best viewed in color.
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Figure B. Visualization of self-attention activation map in Trans-
former encoder. Best viewed in color.

different temporal locations sharing similar feature repre-
sentation. That is the slowness phenomena that we discover
in short-term video features. To alleviate this slowness, we
explicitly multiply starting and ending attentive scores with
features. Figure A(b) illustrates the starting and ending at-
tentive feature. We observe the aforementioned vertical line
patterns are broken by horizontal darker line patterns, indi-
cating that effectiveness of boundary information in repre-
sentation enhancement.

Analysis on the over-smoothing effect. We further explore
the reason for the over-smoothing effect with self-attention
mechanism of the transformer encoder. Figure B shows the
self-attention map of a sample from THUMOS14 [3]. The
x-axis is the input temporal locations, and the y-axis is the
output temporal locations. A diagonal activation pattern is
observed in Figure B, with many short vertical line patterns
visible around the diagonal activation. The vertical patterns
indicate that many different output locations share the same
input activation, which result in the over-smoothing effect.
The input short-term feature already has the problem of
slowness, adding temporal attention to this feature would
aggravate the slowness and result in weaker performance.
Visualization of decoder attention maps. In this subsec-
tion, we present the activation map from self-attention layer
and encoder-decoder attention layer in RTD decoder lay-
ers. Figure C shows the Ng x Np (Nt is the number of
time steps in each snippet, Ng is the number of queries
predicted for each snippet) encoder-decoder activation map

from Layer 1, 3 and 5 (last) of decoder layers from a ran-
domly selected video snippet. Vertical patterns are visible
in these activation maps. Each blue vertical beam corre-
sponds to the ending of an action instance, which indicates
that proposal queries are more focused on the features from
the ending region of an action.

Figure D shows the N X Ng query self-attention activa-
tion map from the last layer of decoder. High activations are
visible along the y-axis, indicating that proposal queries are
keen at learning from some well predicted queries (eg. 1st,
14th and 27th) at inter-proposal modeling. The 14th query
in Figure D is the highest ranked and also a well-predicted
proposal in results.

C. Additional Comparisons with SOTA

AR curves under all tloU thresholds. RTD-Net gener-
ates more precise and more complete proposals, compared
with previous methods. We compare RTD-Net with bottom-
up method BSN under different tloU thresholds for recall.
In Figure E, we demonstrate that: 1) RTD-Net outperforms
BSN under every tloU threshold, especially at smaller num-
ber of proposal conditions. 2) RTD-Net outperforms BSN
under high tloU thresholds, indicating that when the true
positive standard is strict with localization, RTD-Net still
achieves higher recall with better localized predictions.
Efficiency Analysis. Our RTD-Net only presents the trans-
former decoder, while keeping the original MLP encoder
for feature extraction. Therefore, our encoder is with linear
run-time and memory complexity. Our decoder uses cross
attention and the complexity is O(Ny x Ng). In practice,
Ng could be smaller than sequence length. In our experi-
ment, we found our method uses 1,519 MB GPU memory
while existing SOTA methods such as BMN uses 7,152 MB.
In addition, we provide a run-time breakdown for RTD-Net
and BSN in Table H. We infer with 3-minute video input
on one RTX 2080-Ti GPU. We follow [5, 4] to exclude the
backbone feature extractor. It is noted that, for a 3-minute
video, RTD-Net predicts 640 proposals without any post-
processing module while BSN outputs about 3k predictions
for the time-consuming SNMS post-processing.



Layer 1 Layer 3

Action queries
E

Layer 5

0.15
l 010

-0.05

I -0.00

= - IE
|

Figure C. Visualization of encoder-decoder attention activation map, averaged among multiple heads. The y-axis is action queries and the
x-axis represents time steps from encoder features. From yellow to blue represents the intensity of activation, the bluer the stronger the
activation. The white and orange bar underneath the x-axis demonstrates groundtruth instances in this snippet. The orange part represents

action and the rest represents background. Best viewed in color.
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Figure D. Visualization of the self-attention layer in the last layer
of Transformer decoder, averaged among multiple heads. Best
viewed in color.
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Figure E. Visualization of Average Recall at different proposal
numbers under all tloU thresholds. Best viewed in color.
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Figure F. Comparison of number of proposals between RTD-Net
and BSN.

Table H. Run-time breakdown analysis of RTD-Net and BSN.

(a) RTD-Net
Boundary-probability =~ MLP  Transformer Three-branch
predictor + re-weight  encoder decoder Head
RTD-Net 49.29ms 0.32ms 8.97ms 0.89ms
(b) BSN

\ TEM PGM PEM SNMS
BSN ‘ 53.23ms  243.79ms 7.68ms  6026.34ms

RTD-Net directly generates high-quality proposals with
a smaller number of predictions. Due to the pair-wise mod-
eling in our decoder, our predictions do not suffer from the
flooding of redundant, highly-overlapping proposals. As
shown in Figure F, RTD-Net predicts fewer proposals than
BSN [5], but still achieves higher average recall under all
metrics on THUMOS14.
Generalizability of proposals. The ability of generat-
ing high quality proposals for unseen action categories is
an important property of a temporal action proposal gen-
eration method. Following BSN [5] and BMN [4], we
choose two non-overlapped action subsets: ‘“Sports, Ex-
ercise, and Recreation” and “Socializing, Relaxing, and
Leisure” of ActivityNet-1.3, as seen and unseen subsets
separately. Seen subset contains 87 action classes with 4455
training and 2198 validation videos, and unseen subset con-
tains 38 action classes with 1903 training and 896 valida-
tion videos. Based on I3D features, we train RTD-Net with
seen and seen+unseen training videos separately, and eval-
uate on both seen and unseen validation videos. Results in
Table I demonstrate that the performance remains competi-
tive in unseen categories, suggesting that RTD-Net achieves
great generalizability to generate high quality proposals for
unseen classes, and is able to predict accurate temporal ac-
tion proposals regardless of semantics.
Qualitative results. We visualize qualitative results in Fig-
ure G. The top-5 predictions of BMN [4] share similar
starting seconds and scores, and the same ending seconds.
Bottom-up methods like BMN retrieve all proposals around
locations with high boundary scores, while many of them



Table I. Generalization evaluation of RTD-Net on ActivityNet-1.3.

Seen(val) Unseen(val)
AR@100 AUC AR@100 AUC
70.25 62.66 73.09 65.52
69.80 61.32 72.27 64.54
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Figure G. Qualitative results of RTD-Net on ActivityNet-1.3.
The proposals shown are the top-5 predictions for corresponding
groundtruths based on the scoring scheme for each model.

are redundant and evaluated with similar confidence. If pro-
posals around another groundtruth all have confidence over
0.9, the rankings of these proposals with confidence around
0.5 fall down, resulting in a low recall of this groundtruth.
Therefore, heuristic NMS is introduced to address the above
issues, which increases the inference time drastically. In
contrast, a variation in localization appears in RTD predic-
tions. Starting and ending locations of RTD proposals are
varying from one another. More importantly, scores of RTD
proposals are consistent with their rankings. Incomplete
predictions are evaluated with lower scores, and ranked af-
ter those well-predicted proposals. As a result, RTD-Net is
free of NMS module and has a much faster inference speed.

D. Performance on HACS Segments

Dataset. HACS Segments dataset [8] contain 50,000
untrimmed videos and share the same 200 action categories
with ActivityNet-1.3 dataset [2]. To evaluate the quality of
proposals, we calculate Average Recall with Average Num-
ber of proposals per video (AR@AN), and the Area under
the AR vs AN curve (AUC) as metrics on HACS Segments
dataset, which are the same as ActivityNet-1.3 dataset.

Comparison with state-of-the-art methods. We simply
train RTD-Net on HACS Segments, with the same set-
tings on ActivityNet-1.3. As Table J illustrates, RTD-
Net achieves comparable results with only 100 queries per
video. In contrast, BSN [5] predicts a large number of
proposals and calculates evaluation metrics with top-100
of them. With top-100 proposals, BSN achieves a higher
AR@100 than RTD-Net, while AUC of BSN and RTD-

Table J. Comparison with other state-of-the-art proposal gener-
ation methods on validation set of HACS Segments in terms of
AR@AN and AUC. Among them, only RTD-Net is free of NMS.

Method TAG+NMS [9] BSN+SNMS [5] RTD-Net
AR@]1 (val) N N 16.34
AR@100 (val) 55.88 63.62 61.11
AUC (val) 49.15 53.41 53.41
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Figure H. Comparison of ending scores predicted by TSN and [3D
feature extractors.

Net is the same. The comparison demonstrate RTD-Net
achieves higher AR at small AN (e.g., AR@1), which indi-
cates the efficiency of the direct action proposal generation
mechanism.

E. Feature Encoding

Choices of feature extractors. There are two main types
of feature extractors, one is 2D CNN (e.g., TSN [7]), the
other captures temporal relations (e.g., I3D [1]). Bottom-
up methods (e.g., BSN and BMN) first evaluate boundary
confidence of all locations, and then explicitly match start-
ing and ending points. With 2D CNN features that preserve
local information better, bottom-up methods can achieve a
higher recall of boundaries and better performance, which
can be proved in the next section. Compared with 2D
CNN features, I3D features have larger receptive fields and
contain more temporal contexts. RTD-Net exploits self-
attention blocks for proposal-proposal relations, and lever-
ages encoder-decoder blocks to learn action-background
differences. Therefore it can make full use of contextual
information of 13D features and directly generate center lo-
cations and duration of proposals.

Comparison of boundary scores on different feature ex-
tractors. According to the mechanism of the temporal eval-
uation module, temporal locations with boundary scores
higher than a threshold or being with peak scores (namely
their boundary scores S; are higher than their neighbors



Si—1 and S;y1) are considered as candidates of action
boundaries. Figure H displays the ending scores by TSN
and I3D features, and groundtruth ending points are marked
with vertical red dotted lines. We observe that TSN predic-
tions covers every groundtruths with its local maximas but
the first, achieving high recall of ending prediction. In con-
trast, the temporal evaluation module based on I3D features
only captures the first groundtruth, resulting in a weaker re-
call. This might explains the performance drop of BSN and
BMN with I3D feature input and gives solid support for our
feature choice of the temporal evaluation module.

Effect of feature modality. In Table K, we show the ef-
fect of feature modality on our framework by comparing
the performance of RTD-Net under features from differ-
ent modalities. We experiment with features from RGB,
Optical flow and the fusion of both modalities. We find
that Flow features outperforms RGB features by 1.5% on
AR @50, which indicates that motion information is more
significant than appearance information in temporal action
proposal generation. The fusion of both modalities here are
in an early-fusion fashion, which requires both features con-
catenated in the beginning of the training and inference of
the network. The early fusion features outperforms Flow
features by 2.7% on AR@50.

Table K. Comparison of RGB and optical flow on THUMOS 14,
measured by AR@AN.

Modality ‘ @50 @100 @200 @500
RGB 37.28 4549 5273  60.61
Flow 3875 4730 54.11 61.11

Early Fusion | 41.52 49.32 5641 6291
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