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1. Introduction
This supplemental material contains six parts:

• Section 2 gives more quantitative and qualitative ex-
perimental results to demonstrate the superiority of our
novel disentangled framework.

• Section 3 provides more comprehensive analyses of
the proposed disentangled framework to demonstrate
its effectiveness.

• Section 4 shows some examples which have low qual-
ity annotations.

• Section 5 gives more details about the extra saliency
supervision Lsaliency we used in LRSCN training.

• Section 6 gives more details about MECF module.

• Section 7 gives the formulas of two boundary evalua-
tion metrics.

We hope this supplemental material can help you get a bet-
ter understanding of our work.

2. More Quantitative and Qualitative Results
2.1. Quantitative Comparison on more datasets

We compare our method with other SOTA methods
on another two conventional low-resolution datasets EC-
SSD [9] and PASCAL-S [6], which have 1000 and 850 im-
ages respectively. The results are reported in Table.1. It
can be seen that our method consistently outperforms other

*Corresponding author and equal contribution to first author. This
work was supported by National Natural Science Foundation of China
61906036 and the Fundamental Research Funds for the Central Univer-
sities (2242021k30056).

methods across these two conventional datasets. We also
show their PR curves in Fig.1. It should be noted that Fmax

represents Fmax
β . We apologize for this writing error of Ta-

ble.2 in the main text.
F-measure curves of different methods are displayed in

Fig.2, for overall comparisons. One can observe that our
approach noticeably outperforms all the other state-of-the-
art methods. These observations demonstrate the efficiency
and robustness of our proposed method across various chal-
lenging datasets.

SOC [1] is a new challenging dataset with nine attributes.
In Table.2, we evaluate the mean F-measure score of our
method as well as 11 state-of-the-art methods. We can see
the proposed model achieves the competitive results among
most of attributes and the overall score is best.

Model size and running time comparisons among differ-
ent methods are also reported in Table.3. It can be seen
that with the high-resolution input, our method is more ef-
ficient than HRNet. For fair, the running time analysis of
our method is also conducted with the low-resolution input
(352×352), and our method runs at a competitive efficiency.

2.2. Quantitative Comparison with different set-
tings

Although the effectiveness of our method has been con-
firmed by existing quantitative comparison experiments, to
further illustrate the superiority of our method in handling
high-resolution SOD task, we modify the setting of existing
methods to allow for a more comprehensive comparison.

First, we change the input for the current SOTA methods
from low-resolution (e.g., typical size 320×320, 352×352)
to high-resolution (1024 × 1024). The results are reported
in Table.4. It can be found that all the compared SOTA
methods perform better at low-resolution on most evalua-
tion metrics. Therefore, we only compare our methods to
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Table 1. Quantitative comparison with SOTA methods on another two conventional datasets.
ECSSD PASCAL-SModels Training

datasets Fmax
β Fβ Sm MAE Fmax

β Fβ Sm MAE
VGG-16 backbone

Amulet(ICCV2017) MK 0.915 0.868 0.894 0.059 0.828 0.757 0.818 0.100
DGRL(CVPR2018) DUTS 0.922 0.903 0.906 0.043 0.849 0.807 0.834 0.074
DSS(TPAMI2019) MB 0.921 0.904 0.882 0.052 0.831 0.802 0.798 0.094
CPD(CVPR2019) DUTS 0.936 0.917 0.917 0.037 0.861 0.824 0.842 0.072

EGNET(ICCV2019) DUTS 0.943 0.913 0.913 0.041 0.858 0.809 0.848 0.077
MINet(CVPR2020) DUTS 0.943 0.922 0.917 0.036 0.865 0.829 0.854 0.064
ITSD(CVPR2020) DUTS 0.939 0.875 0.914 0.040 0.869 0.773 0.853 0.068

GateNet(ECCV2020) DUTS 0.941 0.896 0.917 0.041 0.870 0.797 0.853 0.068
HRNet(ICCV2019) DUTS+HR 0.925 0.905 0.888 0.052 0.846 0.804 0.817 0.079

Ours DUTS 0.948 0.931 0.918 0.034 0.874 0.845 0.854 0.063
Ours-DH DUTS+HR-L 0.938 0.918 0.904 0.040 0.871 0.845 0.851 0.061

ResNet-50/ResNet-101/ResNeXt-101/Res2Net50 backbone
R3Net(IJCAI2018) MK 0.934 0.883 0.910 0.051 0.834 0.775 0.809 0.101

BasNet(CVPR2019) DUTS 0.942 0.880 0.916 0.037 0.854 0.775 0.832 0.076
PFPN(AAAI2020) DUTS 0.947 0.917 0.927 0.035 0.870 0.824 0.851 0.065
GCPA(AAAI2020) DUTS 0.948 0.919 0.927 0.035 0.869 0.827 0.860 0.062
F3N(AAAI2020) DUTS 0.945 0.925 0.924 0.036 0.872 0.840 0.855 0.062
LDF(CVPR2020) DUTS 0.950 0.930 0.924 0.034 0.874 0.843 0.859 0.061
CSF(ECCV2020) DUTS 0.950 0.925 0.927 0.033 0.874 0.823 0.858 0.069

Ours DUTS 0.952 0.941 0.928 0.029 0.880 0.852 0.861 0.059
Ours-DH DUTS+HR-L 0.953 0.941 0.926 0.030 0.878 0.852 0.859 0.060
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Figure 1. Comparison of PR curves across another two conventional low-resolution datasets.
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Figure 2. Comparison of the F-measure curves across on two high-resolution and five low-resolution datasets.



Table 2. Performance on SOC of different attributes. The last row shows the whole performance on the SOC dataset.
Attr BASNet CPD EGNet F3N GCPA PFPN ITSD LDF MINet CSF GateNet Ours Ours-DH
AC 0.723 0.750 0.756 0.784 0.780 0.772 0.611 0.796 0.790 0.730 0.748 0.793 0.788
BO 0.511 0.794 0.702 0.791 0.882 0.837 0.499 0.807 0.814 0.825 0.737 0.858 0.848
CL 0.682 0.771 0.726 0.757 0.765 0.765 0.610 0.763 0.770 0.751 0.754 0.789 0.789
HO 0.772 0.777 0.756 0.790 0.780 0.777 0.685 0.797 0.792 0.779 0.788 0.817 0.817
MB 0.687 0.715 0.687 0.761 0.691 0.705 0.589 0.758 0.708 0.702 0.725 0.764 0.768
OC 0.686 0.719 0.702 0.724 0.720 0.729 0.629 0.739 0.729 0.703 0.728 0.771 0.771
OV 0.720 0.764 0.764 0.793 0.802 0.806 0.639 0.805 0.788 0.772 0.787 0.798 0.802
SC 0.708 0.723 0.683 0.747 0.707 0.697 0.592 0.746 0.726 0.690 0.715 0.785 0.782
SO 0.632 0.643 0.614 0.668 0.640 0.636 0.523 0.691 0.652 0.621 0.641 0.713 0.713
Avg 0.680 0.740 0.710 0.757 0.752 0.747 0.597 0.767 0.753 0.730 0.736 0.788 0.787

Table 3. Model size and running time comparisons between our approach and SOTA methods.
Ours Ours DGRL DSS BASNet EGNet GCPA PFPN R3Net

Model Size(MB) 309.6 309.6 648 447.3 412.2 332.1 255.8 243.0 214.2
Time(s) 0.21 0.05 0.52 5.12 0.04 0.15 0.02 0.05 0.27

Size 1024× 1024 352× 352 384× 384 224× 224 256× 256 400× 300 320× 320 256× 256 256× 256

HRNet MINet CSF Amulet CPD F3N LDF ITSD GateNet
Model Size(MB) 129.6 181.4 139.3 132.6 111.5 97.4 95.9 63.7 -

Time(s) 0.39 0.01 0.01 0.05 0.02 0.03 0.02 0.02 0.03
Size 1024× 1024 320× 320 224× 224 256× 256 352× 352 352× 352 352× 352 288× 288 384× 384

Table 4. Quantitative comparison with SOTA methods where the inputs are resized to high-resolution.
HRSOD-TE DAVIS-SModels

Fmax
β Fβ Sm MAE BDE Bµ Fmax

β Fβ Sm MAE BDE Bµ

CPD(High-Resolution) 0.868 0.735 0.809 0.073 181.770 0.819 0.720 0.679 0.799 0.062 126.281 0.748
CPD(Low-Resolution) 0.876 0.829 0.887 0.039 72.686 0.824 0.878 0.822 0.903 0.025 36.649 0.703

EGNet(High-Resolution) 0.745 0.693 0.791 0.082 213.333 0.867 0.692 0.644 0.801 0.069 149.537 0.821
EGNet(Low-Resolution) 0.883 0.814 0.888 0.044 73.500 0.896 0.886 0.794 0.897 0.030 37.369 0.799
F3N(High-Resolution) 0.834 0.757 0.825 0.066 187.942 0.798 0.698 0.712 0.826 0.054 130.603 0.716
F3N(Low-Resolution) 0.900 0.853 0.897 0.035 65.901 0.817 0.915 0.845 0.913 0.020 45.106 0.719

GCPA(High-Resolution) 0.810 0.771 0.830 0.066 164.142 0.793 0.750 0.714 0.829 0.057 122.068 0.708
GCPA(Low-Resolution) 0.889 0.827 0.894 0.039 70.320 0.873 0.912 0.833 0.924 0.021 24.132 0.759
MINet(High-Resolution) 0.687 0.629 0.742 0.111 250.149 0.913 0.580 0.508 0.681 0.129 176.671 0.888
MINet(Low-Resolution) 0.902 0.851 0.903 0.032 76.291 0.849 0.915 0.864 0.926 0.019 32.304 0.742
LDF(High-Resolution) 0.650 0.586 0.673 0.133 208.545 0.898 0.590 0.553 0.696 0.101 150.540 0.844
LDF(Low-Resolution) 0.905 0.866 0.905 0.032 58.655 0.812 0.911 0.864 0.922 0.019 35.496 0.713
CSF(High-Resolution) 0.802 0.756 0.843 0.063 181.705 0.873 0.700 0.685 0.824 0.058 137.592 0.816
CSF(Low-Resolution) 0.894 0.832 0.900 0.038 71.293 0.922 0.899 0.822 0.912 0.025 30.488 0.848

Ours 0.918 0.902 0.912 0.027 48.468 0.711 0.933 0.919 0.933 0.015 15.676 0.536

Table 5. Quantitative comparison with SOTA methods which are finetuned on HRSOD-Training dataset.
HRSOD-TE DAVIS-SModels

Fmax
β Fβ Sm MAE BDE Bµ Fmax

β Fβ Sm MAE BDE Bµ

BASNet(finetune) 0.885 0.836 0.904 0.035 64.475 0.813 0.866 0.838 0.911 0.023 25.924 0.659
BASNet(original) 0.878 0.831 0.890 0.038 67.643 0.823 0.857 0.806 0.881 0.039 46.283 0.705

CPD(finetune) 0.890 0.846 0.899 0.035 80.857 0.783 0.890 0.871 0.925 0.020 29.376 0.671
CPD(original) 0.876 0.829 0.887 0.039 72.686 0.824 0.878 0.822 0.903 0.025 36.649 0.703

EGNet(finetune) 0.890 0.857 0.911 0.031 69.084 0.797 0.899 0.881 0.926 0.021 30.674 0.686
EGNet(original) 0.883 0.814 0.888 0.044 73.500 0.896 0.886 0.794 0.897 0.030 37.369 0.799
GCPA(finetune) 0.895 0.837 0.912 0.032 64.656 0.846 0.918 0.857 0.927 0.019 22.312 0.746
GCPA(original) 0.889 0.827 0.894 0.039 70.320 0.873 0.912 0.833 0.924 0.021 24.132 0.759
F3N(finetune) 0.905 0.865 0.909 0.033 60.803 0.787 0.920 0.860 0.921 0.019 29.106 0.661
F3N(original) 0.900 0.853 0.897 0.035 65.901 0.817 0.915 0.845 0.913 0.020 45.106 0.719

PFPN(finetune) 0.896 0.840 0.904 0.038 55.027 0.786 0.901 0.845 0.920 0.022 21.388 0.728
PFPN(original) 0.889 0.825 0.897 0.042 65.048 0.897 0.886 0.822 0.912 0.025 30.488 0.848
ITSD(finetune) 0.834 0.774 0.863 0.052 117.554 0.906 0.820 0.754 0.873 0.041 75.461 0.830
ITSD(original) 0.824 0.715 0.834 0.071 139.943 0.924 0.806 0.687 0.843 0.055 92.864 0.861

MINet(finetune) 0.908 0.871 0.908 0.029 66.089 0.749 0.923 0.879 0.928 0.017 25.408 0.692
MINet(original) 0.902 0.851 0.903 0.032 76.291 0.849 0.915 0.864 0.926 0.019 32.304 0.742
LDF(finetune) 0.910 0.862 0.910 0.031 77.098 0.812 0.920 0.867 0.922 0.018 42.226 0.727
LDF(original) 0.905 0.866 0.905 0.032 58.655 0.812 0.911 0.864 0.922 0.019 35.496 0.713

GateNet(finetune) 0.910 0.856 0.909 0.029 76.434 0.821 0.923 0.872 0.930 0.019 36.984 0.706
GateNet(original) 0.905 0.825 0.906 0.035 79.468 0.886 0.914 0.825 0.923 0.023 44.827 0.778

CSF(finetune) 0.902 0.859 0.909 0.029 56.425 0.884 0.910 0.870 0.931 0.017 24.669 0.791
CSF(original) 0.894 0.832 0.900 0.038 71.293 0.922 0.899 0.822 0.912 0.025 30.488 0.848

Ours 0.918 0.902 0.912 0.027 48.468 0.711 0.933 0.919 0.933 0.015 15.676 0.536



these SOTA methods’ low-resolution results in our main
paper. In particular, it is worth pointing out that due to
GPU memory limitations, we cannot run BASNet, PFPN
and ITSD at high-resolution. So we don’t report their re-
sults in Table.4.

Then, we fine-tune 11 SOTA methods on high-resolution
datasets (HRSOD-Training) which have high quality an-
notations, the results are reported on Table.5. As can be
seen, high annotation quality can improve their original per-
formance. However, even fine-tuned on HRSOD-Training
datasets, our method (only trained on DUTS) still outper-
forms all of them by a large margin.

2.3. Qualitative Comparison

As shown in Fig.3, we provide a comprehensive qual-
itative comparison of our method with other 12 methods
on challenging cases. These visual examples can further
demonstrate that our method is able to restore accurate and
complete boundaries of salient objects.

3. More analyses of the proposed disentangled
framework

As described, high-resolution salient object detection
task should be disentangled into two tasks. One can be
viewed as a classic classification task, while the other one
is a typical regression task. To further illustrate the validity
of our theory, we conduct additional experiments. Specif-
ically, we consider these two tasks as regression or classi-
fication tasks simultaneously. The results are reported in
Table.6. Compared with our proposed method, if we take
the disentangled framework as the combination of the two
regression or classification tasks, the performance will be
degraded. Because the purpose of the proposed disentan-
gled framework is to capture sufficient semantics at low-
resolution (LRSCN Stage) and refine accurate boundary at
high-resolution (HRRN Stage), which should be viewed as
a classic classification task and a typical regression task.
Fig.4 shows some examples that our proposed HRRN can
further refine accurate boundary, guided by trimaps. Specif-
ically, column.3 and column.4 show the saliency maps and
trimaps generated by LRSCN, and column.5 shows the re-
sults refined by HRRN. From Fig.4, guided by trimaps, our
proposed HRRN can further refine the pixels value in un-
certain regions to get more clear saliency results.

Aforementioned work LDF [12] has also introduced con-
cepts related to decoupling. However, they still try to ad-
dress the SOD task under a single regression framework.
Their approach is essentially an expansion of additional
boundary supervision, which barely touches the very nature
of the SOD. As illustrated in our experiments, it is more
natural to disentangle the SOD into two different tasks.

4. Annotation Problems

As described in [13], widely used saliency datasets have
some problems in annotation quality. So, to quantify the
annotation quality problem, we randomly select 100 images
from DUT-TR, and 10 of them have easily spotted annota-
tion errors. We manually relabel the 10 images. The Bµ

between the two different annotations is 0.49 and 42% of
the boundary pixel annotations are inaccurate. Fig.5 shows
some examples which have annotation problems, including
wrong semantic annotation (row 1 and row 2), boundary an-
notation shifting (row 3) and low contour accuracy (row4,
row5 and row 6). In conclusion, the DUTS-TR training
dataset does have annotation problems [13], and we rela-
beled some examples to demonstrate these problems in the
supplemental material. Since correcting annotations for the
whole DUT-TR is a time-consuming task, we will provide
an accurate GT of DUT-TR in the future for statistical anal-
ysis

5. Details of Lsaliency

As described, to guarantee the arruracy of trimap, we
add extra saliency supervision Lsaliency as the supplement
of trimap supervision. Here we give more details about
Lsaliency.

After LRSCN, the prediction saliency map is S, and the
binary groundtruth is G. In SOD, binary cross entropy
(BCE) is the most widely used loss function, and it is a
pixel-wise loss which is defined as:

LPixel = −(Glog(S) + (1−G)log(1− S)). (1)

To learn the structural information of the salient ob-
jects, following the setting of [10, 2], we use the sliding
window fashion to model region-level similarity between
groundtruth and saliency map. The corresponding regions
are denoted as Si = {Si : i = 1, ...M} and Gi = {Gi :
i = 1, ...M}, where M is the total number of region. Then
we use SSIM to evaluate the similarity between Si and Gi,
which is defined as:

SSDi =
(2µsµg + C1)(2σsg + C2)

(µ2
s + µ2

g + C1)(σ2
s + σ2

g + C2)
(2)

where local statistics µs, σs is mean and std vector of Si, µg ,
σg is mean and std vector of Gi. The overall loss function
is defined as:

LRegion = 1− 1

M

M∑
i=1

SSDi. (3)

Finally, inspired by [15], we directly optimize the F-
measure to learn the global information from groundtruth.
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Figure 3. Visual comparison between our method and other SOTA methods. Each sample occupies two rows. Best viewed by zooming in.
It can be clearly observed that our method achieves impressive performance in all these cases.

Image&GT Ours
Figure 4. Examples of coarse saliency maps, trimaps and refined saliency map.



Table 6. Ablation Studies of disentangled framework.
HRSOD-TE DAIVS-SConfigurations

Fmax
β Fβ Sm MAE BDE Bµ Fmax

β Fβ Sm MAE BDE Bµ

Regression-Regression 0.912 0.894 0.899 0.031 56.251 0.814 0.923 0.909 0.918 0.019 22.737 0.649
Classification-Classification 0.913 0.895 0.898 0.030 54.143 0.809 0.921 0.907 0.921 0.020 23.892 0.662

Ours 0.918 0.902 0.912 0.027 48.468 0.711 0.933 0.919 0.933 0.015 15.676 0.536

Image Original Annotation Relabeled Annotation
Figure 5. Examples that have annotation quality problem. Best viewed by zooming in.

Table 7. Ablation Studies of Lsaliency .
HRSOD-TE DAIVS-SConfigurations

Fmax
β Fβ Sm MAE BDE Bµ Fmax

β Fβ Sm MAE BDE Bµ

LRSCN(Ltrimap)+HRRN 0.895 0.870 0.883 0.035 75.732 0.879 0.900 0.880 0.890 0.026 41.221 0.733
LRSCN(LP + Ltrimap)+HRRN 0.912 0.898 0.908 0.029 53.040 0.764 0.925 0.910 0.926 0.018 19.022 0.569
LRSCN(LP + LR + Ltrimap)+HRRN 0.917 0.900 0.910 0.029 52.048 0.743 0.932 0.914 0.930 0.017 17.688 0.552
LRSCN(LP + LR + LO + Ltrimap)+HRRN 0.918 0.902 0.912 0.027 48.468 0.711 0.933 0.919 0.933 0.015 15.676 0.536

For easy remembering, we denote F-measure as Fβ in the
following. Fβ is defined as:

precision =

∑
S ·G∑
S + ϵ

, recall =

∑
S ·G∑
G+ ϵ

, (4)

Fβ =
(1 + β2) · precision · recall

β2 · precision+ recall
, (5)

where · means pixel-wise multiplication, ϵ = 1e−7 is a reg-
ularization constant to avoid division of zero. LObject loss
function is defined as:

LObject = 1− Fβ . (6)

The whole loss is defined as:

L = LObject + LRegion + LPixel. (7)

Besides, following [8, 11], we used multi-levels saliency
supervision to facilitate sufficient training, so the whole

saliency loss is defined as:

Lsaliency =

4∑
i=1

1

2i−1
Li, (8)

where i means the i-th level.
To further validate the role of Lsaliency, we train the

LRSCN with different loss functions and the results are re-
ported on Table.7. As can be can, without Lsaliency, the
performance is dropped lot. Because the trimap groundtruth
is randomly generated from binary groundtruth, so only us-
ing Ltrimap cannot maintain consistency between trimap
and saliency map. When we only add LP on multi-levels,
the model can already achieve the largest performance
boost. A better performance has been achieved through the
combination of LP , LR and LO.

6. Details of MECF Module
As described, we develop a multi-scale feature extraction

module (ME) and cross-level feature fusion module (CF) to
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Figure 6. Architecture of MECF Module.

help LRSCN capture sufficient semantics at low-resolution.
Here we give more details about MECF module. The archi-
tecture of MECF Module is shown in Fig.6.

Multi-scale feature extraction module can allow each
spatial location to view the local context at small scale
spaces and capture multi-scale contextual information,
which can enlarge the feature F 1

l receptive field. Specifi-
cally, we first use an average pooling and a 3 × 3 convo-
lutional layer to downsample F 1

l . Then upsampled feature
from small scale is added with F 1

l . Finally, Global Convo-
lutional Network (GCN) [7] is used to further enlarge the
feature receptive field. Because F 1

3 and F 1
4 are close to the

input and receptive field is relatively small, we use GCNs
with k = 7, 11, 15 to fully enlarge receptive field. Recep-
tive fields of F 1

5 and F 1
6 are relatively bigger, we only use

GCNs with k = 7, 11 and k = 7.
Low-level features have rich details but full of back-

ground noises, so we design cross-level feature fusion mod-
ule, which can leverage the rich semantics of high-level
feature F 2

h and help restrain the non-salient regions in low-
level features. Specifically, we first use a 1×1 convolutional
layer to compress the channels of F 2

l , then use two 3 × 3
convolutional layer to transfer the feature for SOD task. Fi-
nally, the transferred feature is fused with high-level feature
F 2
h as the output of this module. Each of these convolution

layers is followed by a batch normalization [5] and a ReLU
activation [4].

7. Formulas of Evaluation Metrics

Following [13] and [14], we use Boundary Displace-
ment Error(BDE) [3] and Bµ metrics to evaluate the bound-
ary quality.

BDE measures the average displacement error of bound-
ary pixels between two predictions, which can be formu-
lated as:

BDE(X,Y ) =

∑
x infy∈Y d(x, y)

2NX
+

∑
y infx∈Xd(x, y)

2NY
,

(9)

where X and Y are two boundary pixel sets which represent
saliency prediction and their corresponding groundtruth,
and x, y are pixels in them. Nx and Ny denote the num-
ber pixels in X and Y . inf represents for the infimum and
d(·) denotes Euclidean distance.

Bµ evaluates the structure alignment between saliency
map and their groundtruth, it can be expressed as:

Bµ = 1− 2
∑

(gsgy)∑
(g2s + g2y)

, (10)

where gs and gy represent the binarized edge maps of pre-
dicted saliency map and groundtruth. Following [14], we
use Canny edge detector to compute edge maps. Bµ reflect
the sharpness of predictions which is consistent with human
perception. Both two evaluation codes are provided in the
Github link in our main paper.
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aware salient object detection. In CVPR, pages 7479–7489.
Computer Vision Foundation / IEEE, 2019.

[9] Jianping Shi, Qiong Yan, Li Xu, and Jiaya Jia. Hierarchical
image saliency detection on extended CSSD. Trans. Pattern
Anal. Mach. Intell., 38(4):717–729, 2016.

[10] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE TIP, 13(4):600–612, 2004.



[11] Jun Wei, Shuhui Wang, and Qingming Huang. F3net: Fu-
sion, feedback and focus for salient object detection. CoRR,
abs/1911.11445, 2019.

[12] Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang,
and Qi Tian. Label decoupling framework for salient object
detection. In CVPR, pages 13022–13031. IEEE, 2020.

[13] Yi Zeng, Pingping Zhang, Zhe L. Lin, Jianming Zhang, and
Huchuan Lu. Towards high-resolution salient object detec-
tion. In ICCV, pages 7233–7242. IEEE, 2019.

[14] Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu, and
Yuchao Dai. Weakly-supervised salient object detection via
scribble annotations. In CVPR, pages 12543–12552. IEEE,
2020.

[15] Kai Zhao, Shanghua Gao, Wenguan Wang, and Ming-Ming
Cheng. Optimizing the f-measure for threshold-free salient
object detection. In ICCV, pages 8848–8856. IEEE, 2019.


