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In this supplementary material, we provide more de-

tails about our network architecture in Section A. Then

we present ablation studies to validate the effectiveness of

each design in our approach in Section B. In the next, we

demonstrate the generalization capabilities of our approach

to novel categories that are different from the training cat-

egory (“chair”) in Section C. Finally, we show more qual-

itative comparison with other competitive methods on the

real-world 3D scene datasets in Section D.

A. Network Architectures

PointNet: The detailed network architecture of PointNet

used in the paper is depicted in Figure 1. Firstly, we map

the coordinates of P into the feature space using a fully-

connected (FC) layer and a ResNet-FC [7] block. Then, in-

stead of using a global pooling operation to obtain a global

feature like [4], we perform the grid-pooling operation [10]

to locally fuse the extracted features. Specifically, we per-

form an average-pooling operation for the features that are

within the same voxel cell from a volumetric grid with

the size of 643. Next, we concatenate the locally pooled

features with the features before pooling, and then feed

the formed features into the subsequent ResNet-FC block.

Overall, we use 5 ResNet blocks with intermediate grid-

pooling layers to obtain the point-wise features F0.

3D U-Net: The network architecture of 3D-UNet is illus-

trated in Figure 2. The 3D U-Net [13] is used to aggregate

both local and global information of the volumetric feature

V0 that is transformed from F0. The dimensions of input

and output features are both set to 64. To ensure that the

receptive field is equal to or larger than the size of the input

feature volume, the depth of the 3D U-Net is set to 4.

Occupancy Decoder: As shown in Figure 3, the occupancy

decoder consists of 5 stacked ResNet-FC blocks with skip

connections. And the hidden feature dimension is set to 32.

B. Ablation studies

In this section, we conduct additional ablation studies by

alternatively removing one of the modules of the proposed

approach to verify the effectiveness of them.

Effect of pre-training (i.e. w/o pre-training) Based on our

approach, an alternative solution to provide initialization of

the signed field for the proposed sign-agnostic optimization

is to adopt the geometric initialization as in SAL [1], which

initializes the implicit decoder to approximate the signed

distance field of the unit sphere. The visualization compar-

isons are shown in Figure 4. Without the pre-trained shape

prior, the sign agnostic optimization fails to reconstruct rea-

sonable geometries.

Datasets Methods CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
ShapaNet

-chair [3]

opt. enc. 0.516 93.42 97.15 99.40
Ours 0.522 93.51 97.16 99.37

Synethetic

Room [12]

opt. enc. 0.516 89.75 93.43 98.53

Ours 0.495 90.04 93.85 98.82

ScanNet [5]
opt. enc. 0.741 86.24 81.49 95.56

Ours 0.728 86.40 82.08 95.86

Table 1: Additional ablation studies on three datasets.



32 323 64 32 32 32

FC-64 ResNet-FC Block Expand and Concat ResNet-FC Block

po
in

ts

FC-32Grid Pooling

643 643

Grid Pooling

for i = 1, …., 4

Input PC

Figure 1: ResNet [7] variants of PointNet[4]. It utilizes a stack of five ResNet-FC blocks with skip connections and

grid-pooling layers to extract point-wise features F0 from the observed surface point cloud P .
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Figure 2: 3D U-Net. To effectively fuse the global and local information of input shape, we transform V0 (produced from

F0) to V using a 3D U-Net, which consists of a series of 3D down- and up-sampling convolutions with skip connections.
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Figure 3: Occupancy Decoder. It contains five ResNet-FC

blocks with skip connections. Given a point q randomly

sampled in the 3D space, we query a feature vector fq from

the feature volume V according to the location of q. Then

we pass q and fq into the occupancy decoder to predict the

occupancy probability of q (i.e. Oq).
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Figure 4: Additional Qualitative Ablation Studies: (a)

input point clouds, (b) without the pre-training of convolu-

tional occupancy networks, and (c) Ours.



Effect of only optimizing the encoder (i.e. opt. enc.) In

all experiments, we choose to optimize the whole network

parameters with the unsigned binary cross-entropy loss dur-

ing inference. An alternative solution is to only optimize the

encoder (i.e. PointNet and 3D U-Net) while freezing the oc-

cupancy decoder. The comparisons shown in Table 1 clearly

demonstrate that jointly optimizing the whole network can

achieve better generality to unseen shapes.

Ablation studies on the iteration number of the test-time
optimization. Fig. 5 and 6 show the quantitative and qual-

itative results w.r.t. the number of iterations, respectively.

Notably, the ‘Iter 0’ represents the result before optimiza-

tion. We can observe that after about 600 iterations of the

test-time optimization, the results become stable.test time optimization, the results become stable.

Figure 5: Quantitative results obtained at different itera-

tions during the test-time optimization. Experiments are

conducted on the synthetic room dataset with the input of

30,000 points.
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Figure 6: Examples of qualitative results of a synthetic

room obtained at different iterations during the test-time op-

timization.

Ablation studies on the sparsity level of the input. Quan-

titative results for different sparsity levels of the input are

shown in Table 2 and 3. We can observe that the results

of different evaluation metrics only show a slightly small

variance, which clearly demonstrates the robustness of our

method against the input sparsity.

|P| CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
5,000 0.529 89.71 95.51 99.00

10,000 0.524 92.37 96.85 99.20

20,000 0.522 93.29 97.11 99.06

30,000 0.522 93.51 97.16 99.37

40,000 0.502 93.57 97.11 99.35

50,000 0.502 93.61 97.04 99.29

Table 2: Quantitative results at different sparsity levels of

the input point cloud P on the ShapeNet ‘chair’ category.

|P| CD ↓ NC ↑ FS (τ ) ↑ FS (2τ ) ↑
5,000 0.511 89.24 93.50 98.57

10,000 0.494 89.86 94.01 98.89

20,000 0.494 90.03 93.85 98.73

30,000 0.495 90.04 93.85 98.82

40,000 0.488 90.04 93.85 98.73

50,000 0.476 89.98 93.95 98.99

Table 3: Quantitative results at different sparsity levels of

the input point cloud P on the synthetic room dataset.

C. Novel Categories Generalization

In this section, we analyze the generalization perfor-

mance of our approach and the baselines on the object-level

reconstruction. We directly evaluate them on novel cate-

gories such as “bench”, “lamp” and “watercraft” that are

different from the training “chair” category. As shown in

Figure 7, our approach can preserve more geometric de-

tails such as small holes, long rods, and thin parts, while

the baselines cannot. This demonstrates the superior gen-

eralization capabilities of the proposed approach to unseen

categories.

D. Real-world Scenes Generalization

In this section, we first describe the implementation de-

tails of sign-agnostic optimization of convolutional occu-

pancy networks in a sliding-window manner, and then pro-

vide more qualitative comparison on the real-world scenes

datasets including ScanNet-V2 [5] and Matterport3d [2].
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Figure 7: Generalize to Novel Categories. We directly evaluate our approach and baselines on unseen, novel categories

including “bench”, “lamp”, and “watercraft” that are very different from the training “chair” category.

D.1. Implementation Details of Sign-Agnostic Op-
timization in a Sliding-Window Manner

In the experiments of object-level and synthetic scene

reconstruction, we perform pre-training and sign-agnostic

optimization within the unit cube. However, this strategy

cannot deal with real-world scenes that are arbitrarily sized

and represented in meters. Although we can resize these

scenes into the unit cube, convert them into volumetric grids

of size 643, and then process them using the 3D U-Net as

described in Section A, we may not be able to recover fine-

grained geometries as the low-resolution voxelization pro-

cess loses much information about surface details, while the

high-resolution voxelization such as 1283, 2563 would suf-

fer from the heavy computation cost and memory issues.

Thanks to the translation equivalence of fully convolutional

networks, we can apply the proposed model to local patches

cropped from large scenes and perform implicit surface re-

construction in a sliding-window manner, which can help

us preserve the input information while avoiding memory

issues of 3D CNNs.

More specifically, we also pre-train our model on the

synthetic indoor scene dataset [12] where the size of scenes

is approximately a real-world unit of 4.4m × 4.4m × 4.4m.

Similar to the setting of [12], we set the voxel size as

0.02m such that each scene is contained in a volumetric

grid with size 2203. During the network pre-training, we

utilize the Res-PointNet and 3D U-Net described in Sec-

tion A to learn corresponding convolutional features from

each cropped subvolume. Then we predict the occupancy

probabilities of query points uniformly sampled from the

grid of input subvolume. Specifically, we randomly sample

one point within the whole scene and use it as the center of

the subvolume. The size of each cropped subvolume (i.e.

H × W × D) is set to 25 × 25 × 25. Since the receptive

field of 3D U-Net is 64, we set the size of input subvolumes

to (H +63)(W +63)+ (D+63) = 88× 88× 88. At each



iteration, we use a batch size of 4 subvolumes.

During the test-optimization stage, we divide the large

scene into overlapped subvolumes and then perform sign-

agnostic optimization for each subvolume in a sliding-

window manner. We determine the size of cropped subvol-

umes according to the size of input scenes such that they are

compatible with the GPU memory. Notably, we do not need

the padding operation as the cropped subvolumes overlap.

D.2. Additional Qualitative Results

We have provided more qualitative comparisons on the

ScanNet [5] in Figure 8. Besides, more visualized results on

the Matterport3D [2] are shown in Figure 9. From these re-

sults, we can clearly observe that our method achieves more

superior performance to large scenes with multiple rooms

than the existing state-of-the-arts. And in comparison with

those baselines such as SPSR [9, 8] that heavily rely on

accurate surface normals, our approach can avoid the de-

generated results caused by inaccurate normal estimation.

Besides, compared to CONet [12], our approach can recon-

struct more complete geometries and preserve complicated

geometric details well, which validates the effectiveness of

the proposed sign-agnostic optimization during inference.

Overall, our method simultaneously maximizes the scala-

bility to large scenes, generality to unseen shapes, and ap-

plicability to real scans that lack reliable surface normals.
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Figure 8: Scene-level Reconstruction on ScanNet [5]. Qualitative comparisons for surface reconstruction from un-

orientated scans of ScanNet. All methods except SPSR are trained on the synthetic room dataset and directly evaluated

on ScanNet.
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Figure 9: Scene-level Reconstruction on Matterport 3D [2]. Qualitative comparisons for surface reconstruction from un-

orientated scans of Matterport3D. All methods except SPSR are trained on the synthetic room dataset and directly evaluated

on Matterport 3D.


