
A. Additional Diagnostic Experiments

A.1. The Role of Explicit Backward Label Mapping

Related work either focus on tasks with labels invari-
ant to warping like image classification or gaze estimation
[6, 11] (discussed in Sec 3.1), or expect an implicit back-
ward mapping to be learned through black-box end-to-end
training [10] (discussed in Sec 2). In this section, we sug-
gest that the implicit backward label mapping approach is
not feasible for object detection. To this end, we train and
test our KDE methods minus any bounding box unwarping.
Specifically, we no longer unwarp bounding boxes when
computing loss during training and when outputting final
detections during testing. Instead, we expect the model to
output detections in the original image space.

Due to instability, additional measures are taken to make
it end-to-end trainable. First, we train with a decreased
learning rate of 1e-4. Second, we train with and without
adding ground truth bounding boxes to RoI proposals. The
main KDE experiments do not add ground truth to RoI pro-
posals, because there is no way of warping bounding boxes
into the warped image space (the implementation of T does
not exist). We additionally try setting this option here, be-
cause it would help the RoI head converge quicker, under
the expectation that the RPN should output proposals in the
original space. All other training settings are identical to the
baseline setup (Sec 4.1.1).

Results are shown in Tab A. The overall AP is single-
digit under all of these configurations, demonstrating the
difficulty of implicitly learning the backward label map-
ping. This is likely due to the fact that our model is pre-
trained on COCO [9], so it has learned to localize objects
based on their exact locations in the image, and finetuning
on Argoverse-HD is not enough to “unlearn” this behavior
and learn the backward label mapping. Another factor is
that in the SI and SC cases, each image is warped differ-
ently, making the task of learning the backwards label map-
ping even more challenging. We suspect that training from
scratch with a larger dataset like COCO and using the warp
parameters (e.g. the saliency map) as input may produce
better results. However, this only reinforces the appeal of
our method due to ease of implementation and cross-warp
generalizability (we can avoid having to train a new model
for each warping mechanism).

A.2. Sensitivity to Quality of Previous-Frame De-
tections

Two of our methods, SI and SC are dependent on the
accuracy of the previous-frame detections. In this section,
we analyze the sensitivity of such a dependency through a
soft upper bound on SI and SC , which is generated using
the current frame’s ground truth annotations in place of de-
tections from the previous frame. This soft upper bound is

Figure A: Plots showing the effect of motion (jitter) on AP
using the KDE SI formulation. Results have been normal-
ized according to the AP at 0 jitter. As is intuitive, motion
affects APS the most and APL the least. After finetuning
(with an artificial jitter of 50), we see that the model reacts
less adversely to jitter, indicating that our regularization has
helped.

a perfect saliency map, up to the amplitude and bandwidth
hyperparameters. Note that this is only a change in the test-
ing configuration.

We report results in Tab A. We see a significant boost
in accuracy in all cases. Notably, the finetuned KDE SI

model at 0.5x scale achieves an AP of 29.6, outperforming
the baseline’s accuracy of 29.2 at 0.75x scale.

A.3. Sensitivity to Inter-Frame Motion

Having noted that the SI and SC formulations are sensi-
tive to the accuracy of the previous-frame detections, in this
section, we further test its robustness to motion between
frames. We use ground truth bounding boxes (rather than
detections) from the previous frame in order to isolate the
effect of motion on accuracy. We introduce a jitter parame-
ter j and translate each of the ground truth bounding boxes
in the x and y directions by values sampled from U(−j, j).
The translation values are in pixels in reference to the orig-
inal image size of 1920 × 1200. As in Sec A.2, this is a
purely testing-time change. Also note that the upper bound
experiments in Sec A.2 follows by setting j = 0. We test
only on SI and report the full results in Tab A. We also plot
summarized results and discuss observations in A.

B. FOVEA Beyond Faster R-CNN
In the main text and other sections of the appendix, we

conduct our experiment based on Faster R-CNN. However,
our proposed warping-for-detection framework is agnostic
to specific detectors. To show this, we test our methods on
RetinaNet [8], a popular single-stage object detector, and
on YOLOF [3], a recent YOLO variant that avoids bells
and whistles and long training schedules (up to 8x for Ima-
geNet and 11x for COCO compared to standard schedules
for YOLOv4 [1]).



Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2
KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5
KDE (SI ) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9
Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7
Upp. Bound (1x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6

Without an Explicit Backward Label Mapping (Sec A.1)
KDE (SD) 5.4 14.2 3.7 0.0 0.9 20.7 3.2 0.4 1.2 0.8 27.9 0.0 5.3 4.2
KDE (SI ) 6.1 15.6 4.0 0.2 0.8 20.3 2.3 0.6 0.7 1.8 30.8 0.0 7.0 5.4
KDE (SC) 6.0 15.9 3.8 0.1 0.9 21.9 3.0 0.6 0.9 1.5 30.2 0.0 6.7 5.2

Upper Bound with Ground Truth Saliency (Sec A.2)
KDE (SI ) 25.4 42.6 25.6 9.1 26.2 49.5 25.3 17.4 16.8 10.1 49.4 23.4 41.7 19.4
KDE (SC) 24.5 41.7 24.6 7.5 26.8 48.8 23.6 14.5 15.2 9.7 49.7 22.6 41.3 19.8

Sensitivity to Inter-Frame Motion (Sec A.3)
KDE (SI ), j = 10 25.3 42.9 25.3 8.4 26.7 49.1 25.0 16.4 16.2 10.1 48.8 25.0 41.8 19.5
KDE (SI ), j = 25 24.1 41.0 24.5 6.4 26.1 49.0 24.0 12.6 15.2 9.0 48.5 22.9 41.1 19.6
KDE (SI ), j = 50 22.5 38.3 22.9 4.2 24.1 49.1 21.9 9.9 14.4 8.2 48.4 18.5 39.0 19.7
KDE (SI ), j = 100 20.9 35.1 21.6 2.8 21.9 48.0 20.1 7.1 14.0 6.8 47.8 15.3 36.7 19.1
KDE (SI ), j = 200 20.0 33.5 20.6 2.5 20.5 46.7 19.2 6.0 13.4 6.2 46.7 14.3 35.5 18.5

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6
Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1
KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3
KDE (SI ) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5
LKDE (SI ) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7
Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1
Upp. Bound (1x) 31.6 51.4 33.5 14.5 33.5 54.1 31.8 15.2 37.4 9.0 43.9 35.3 50.2 30.2

Without an Explicit Backward Label Mapping (Sec A.1)
KDE (SD), no RoI GT 2.1 2.6 2.5 0.0 0.0 4.0 0.6 0.0 0.0 0.6 14.8 0.0 0.0 0.9
KDE (SD) 1.8 2.7 1.9 0.0 0.0 3.2 0.6 0.0 0.0 0.0 13.3 0.0 0.1 0.6
KDE (SI ), no RoI GT 2.5 3.0 2.9 0.0 0.1 4.3 0.7 0.0 0.0 0.6 17.0 0.9 0.0 0.9
KDE (SI ) 2.0 2.8 2.4 0.0 0.0 3.7 0.6 0.0 0.0 0.0 14.8 0.0 0.3 0.5

Upper Bound with Ground Truth Saliency (Sec A.2)
KDE (SI ) 29.6 48.7 30.7 12.0 32.8 54.4 28.3 16.3 27.7 9.9 43.9 30.6 50.9 28.8
KDE (SC) 27.8 45.5 28.8 9.6 31.7 53.4 27.5 13.9 24.7 6.5 44.5 25.1 50.2 29.6

Sensitivity to Inter-Frame Motion (Sec A.3)
KDE (SI ), j = 10 29.4 48.3 30.7 11.5 32.8 54.6 27.9 15.9 27.2 9.7 43.7 31.1 50.6 28.7
KDE (SI ), j = 25 28.0 46.1 29.2 9.2 32.1 55.3 26.4 13.9 25.9 9.3 43.9 26.8 49.2 28.7
KDE (SI ), j = 50 26.2 42.9 27.7 6.6 30.5 54.9 24.1 12.1 24.9 8.6 44.1 21.8 46.2 27.9
KDE (SI ), j = 100 24.5 39.9 25.8 4.8 28.6 53.5 22.3 10.2 23.5 7.6 43.5 17.7 43.9 27.1
KDE (SI ), j = 200 23.6 38.3 25.2 4.2 27.8 53.0 21.4 8.6 22.8 7.4 42.9 16.6 42.7 26.6

Table A: Results before and after finetuning on AVHD. Please refer to Sec A for a detailed discussion.

For both these detectors, we test baselines at 0.5x and
0.75x scales both before and after finetuning. We then com-
pare these results against our KDE SI method at 0.5x scale.
We use a learning rate of 0.01 for the RetinaNet KDE SI

model and 0.005 for the RetinaNet baselines. All other
training settings for RetinaNet are identical to the Faster-
RCNN baseline. For YOLOF, we use a learning rate of
0.012 and keep all other settings true to the original paper.



Method AP AP50 AP75 APS APM APL

RetinaNet, Before Finetuning on Argoverse-HD
Baseline (0.5x) 18.5 29.7 18.6 1.3 17.2 48.8
KDE (SI ) 18.5 31.2 17.9 4.5 16.8 44.9
Upp. Bound (0.75x) 24.8 38.8 25.5 4.5 28.7 52.0

RetinaNet, After Finetuning on Argoverse-HD
Baseline (0.5x) 22.6 38.9 21.4 4.0 22.0 53.1
KDE (SI ) 24.9 40.3 25.3 7.1 27.7 50.6
Upp. Bound (0.75x) 29.9 48.6 30.1 9.7 32.5 54.2

YOLOF, Before Finetuning on Argoverse-HD
Baseline (0.5x) 15.0 25.4 14.3 0.6 11.0 46.0
KDE (SI ) 16.8 29.0 16.0 0.9 14.0 46.4
Upp. Bound (0.75x) 21.6 35.5 22.3 2.3 22.2 52.7

YOLOF, After Finetuning on Argoverse-HD
Baseline (0.5x) 18.4 30.5 18.3 1.4 16.5 47.9
KDE (SI ) 21.3 36.7 20.2 3.5 21.8 49.7
Upp. Bound (0.75x) 25.1 41.3 25.3 4.7 27.6 54.1

Table B: Experiments with RetinaNet [8] and YOLOF [3].
We follow the same setup as the experiment with Faster R-
CNN. The top quarter suggests that unlike Faster R-CNN,
RetinaNet does not work off-the-shelf with our KDE warp-
ing. However, the second quarter suggests similar perfor-
mance boosts as with Faster R-CNN can be gained after
finetuning on Argoverse-HD. Interestingly, for YOLOF, our
method boosts AP in all categories – small, medium, and
large – even with off-the-shelf weights.

Results are presented in Tab B.

C. Comparison Against Additional Baselines
There are other approaches that make use of image warp-

ing or patch-wise zoom for visual understanding. The first
noticeable work [11], explained extensively in the main text,
warps the input image for tasks that have labels invariant
to warping. The second noticeable work [5] employs rein-
forcement learning (RL) to decide which patches to zoom in
for high-resolution processing. In this section, we attempt
to compare our FOVEA with these two approaches.

Our method builds upon spatial transformer networks [6,
11] and we have already compared against [11] sporadically
in the main text. Here provides a summary of all the differ-
ences (see Tab C). A naive approach might directly penalize
the discrepancy between the output of the (warped) network
and the unwarped ground-truth in an attempt to implicitly
learn the inverse mapping, but this results in abysmal per-
formance (dropping 28.1 to 2.5 AP, discussed in Sec A.1).
To solve this issue, in Sec 3.1, we note that [6, 11] actu-
ally learn a backward map T −1 instead of a forward one
T . This allows us to add a backward-map layer that trans-
forms bounding box coordinates back to the original space
via T −1, dramatically improving accuracy. A second sig-
nificant difference with [6, 11] is our focus on attention-

for-efficiency. If the effort required to determine where to
attend is more than the effort to run the raw detector, atten-
tional processing can be inefficient (see the next paragraph).
[11] introduces a lightweight saliency network to produce
a heatmap for where to attend; however, this model does
not extend to object detection, perhaps because it requires
the larger capacity of a detection network (see Sec 4.1.1).
Instead, we replace this feedforward network with an es-
sentially zero-cost saliency map constructed via a simple
but effective global spatial prior (computed offline) or tem-
poral prior (computed from previous frame’s detections).
Next, we propose a technique to prevent cropping during
warping (via reflection padding, as shown in Fig 5), which
also boosts performance by a noticeable amount. Finally, as
stated in the training formulation in Sec 3.2, it doesn’t even
make sense to train a standard RPN-based detector with
warped input due to choice of delta encoding (which nor-
mally helps stabilize training). We must remove this stan-
dard encoding and use GIoU to compensate for the lost sta-
bility during training.

Method AP

FOVEA (Ours full) 28.1
w/o Explicit backward mapping 2.5
w/o KDE saliency (using saliency net as in [11]) Doesn’t train
w/o Anti-crop regularization 26.9
w/o direct RPN box encoding N/A

Table C: Summary of key modifications in FOVEA.

Next, we attempt to compare against this RL-based zoom
method [5] using our baseline detector (public implemen-
tation from mmdetection [2]) on their Caltech Pedestrian
Dataset [4]. However, while their full-scale 800×600 Faster
R-CNN detector reportedly takes 304ms, our implementa-
tion is dramatically faster (44ms), consistent with the liter-
ature for modern implementations and GPUs. This changes
the conclusions of that work because full-scale processing
is now faster than coarse plus zoomed-in processing (tak-
ing 28ms and 25ms respectively), even assuming a zero-
runtime RL module (44ms < 28ms + 25ms).

D. Additional Visualizations
Please refer to Fig B and C for additional qualitative re-

sults of our method.

E. Detection-Only Streaming Evaluation
In Sec 4.2 of the main text, we provide the full-stack

evaluation for streaming detection. Here we provide the
detection-only evaluation for completeness in Tab D. This
setting only allows detection and scheduling, and thus iso-
lating the contribution of tracking and forecasting. We ob-
serve similar trend as in the full-stack setting in Tab 2.
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Figure B: Additional examples of the SI KDE warping method. Bounding boxes on the saliency map denote previous frame
detections, and bounding boxes on the warped image denote current frame detections. The magnification heatmap depicts the
amount of magnification at different regions of the warped image. (a) is an example of SI correctly adapting to an off-center
horizon. (b) shows a multimodal saliency distribution, leading to a multimodal magnification in the x direction. (c) is another
example of SI correctly magnifying small objects in the horizon. (d) is a failure case in which duplicate detections of the
traffic lights in the previous frame leads to more magnification than desired along that horizontal strip. One solution to this
could be to weight our KDE kernels by the confidence of the detection. (e) is another failure case of SI , in which a small
clipped detection along the right edge leads to extreme magnification in that region. One general issue we observe is that the
regions immediately adjacent to magnified regions are often contracted. This is visible in the magnification heatmaps as the
blue shadows around magnified regions. This is a byproduct of the dropoff in attraction effect of the local attraction kernel.
Perhaps using non-Gaussian kernels can mitigate this issue.

F. Additional Implementation Details
In this section, we provide additional details necessary

to reproduce the results in the main text.
For the learned separable model from Sec 4.1.2, we use

two arrays of length 31 to model saliency along the x and y

dimensions, and during training, we blur the image with a
47× 47 Gaussian filter in the first epoch, a trick introduced
in [11] to force the model to zoom. For the learned nonsep-
arable model, we use an 11× 11 saliency grid, and we blur
the image with a 31 × 31 filter in the first epoch. We use
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Figure C: Examples of KDE warp computed from bounding boxes, extracted from a training dataset (SD) or the previous
frame’s detections (SI , SC). We visualize predicted bounding boxes in the warped image. Recall that large objects won’t
be visible in the saliency due to their large variance from Eq 8. (a) SD magnifies the horizon (b) SI magnifies the center of
the image, similar to SD (c) SI adapts to magnify the mid-right region (d) SC’s saliency combines the temporal and spatial
biases.

an attraction kernel k with a standard deviation of 5.5 for
both versions. Additionally, we multiply the learning rate
and weight decay of saliency parameters by 0.5 in the first
epoch and 0.2 in the last two epochs, for stability. We find
that we don’t need anti-crop regularization here, because
learning a fixed warp tends to behave nicely.

For each of our KDE methods, we use arrays of length 31
and 51 to model saliency in the vertical and horizontal direc-

tions, respectively. This is chosen to match the aspect ratio
of the original input image and thereby preserve the vertical
and horizontal “forces” exerted by the attraction kernel.

For the baseline detector, we adopt the Faster R-CNN
implementation of mmdetection 2.7 [2]. All our experi-
ments are conducted in an environment with PyTorch 1.6,
CUDA 10.2 and cuDNN 7.6.5. For streaming evaluation,
we mention a performance boost due to better implementa-



ID Method AP APS APM APL

1 Prior art [7] 13.0 1.1 9.2 26.6

2 + Better implementation 14.4 1.9 11.5 27.9
3 + Train with pseudo GT 15.7 3.0 14.8 27.1

4 2 + Ours (SI ) 15.7 4.7 12.8 26.8
5 3 + Ours (SI ) 17.1 5.5 15.1 27.6

Table D: Streaming evaluation in the detection-only setting.
First, we are able to improve over previous state-of-the-art
through better implementation (row 2) and training with
pseudo ground truth (row 3). Second, our proposed KDE
warping further boosts the streaming accuracy (row 4-5).

tion in Tab D & Tab 2, and the changes are mainly adopting
newer versions of mmdetection and cuDNN compared to
the solution in [7] (switching from a smooth L1 loss to L1
loss for the regression part and code optimization).
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