
Supplementary Material for “Divide and Contrast: Self-supervised Learning
from Uncurated Data”

Yonglong Tian
MIT

Olivier J. Hénaff
DeepMind

Aaron van den Oord
DeepMind

A. Image Augmentations
For a fair comparison, we used exactly the same image

augmentations as BYOL [13] (which are a subset of the
ones presented in SimCLR [6]):

• random resized cropping: a random patch is cropped,
whose area is uniformly sampled between 0.08ˆ and
1ˆ that of the raw image, and aspect ratio is logarith-
mically sampled between 3{4 and 4{3. We resize the
patch to 224 ˆ 224 pixels using bicubic interpolation;

• random horizontal flip;

• color jittering: the brightness, contrast, saturation and
hue of the image are shifted by a uniformly distributed
offset applied on all the pixels of the same image;

• color dropping: randomly convert images to grayscale,
computed as 0.2989R ` 0.5870G ` 0.1140B;

• Gaussian blurring: a Gaussian kernel of size 23ˆ23 is
used, whose standard deviation is uniformly sampled
from r0.1, 2.0s;

• solarization: an optional color transformation x ÞÑ x ¨

1txă0.5u ` p1 ´ xq ¨ 1txě0.5u for pixels with values in
r0, 1s.

Augmentations from the sets T and T 1 are compositions
of the above image augmentations, each applied with a pre-
determined probability. The parameters for T and T 1 are
listed in Table 1.

In the evaluation or representation clustering stage, we
follow the standard center-crop strategy: resize images to
256 pixels along the shorter side, and crop out the central
224 ˆ 224 window.

B. Pre-trainning Datasets
ImageNet. We split out 10009 images from the train set
as our local validation set, and use the remaining 1271158
images for both unsupervised pre-training and linear classi-
fier training. After selecting hyper-parameters based on the

Parameter T T 1

Random crop probability 1.0 1.0
Flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Table 1. Parameters used to generate image augmentations during
training, which are exactly the same as those in [13].

performance of the local validation set, we report accuracy
on the official validation set consisting of 50000 images.
JFT-300M. The JFT-300M dataset contains 301.7 millions
of images in total.
YFCC100M. YFCC-100M is a widely used uncurated
dataset that includes „95 millions of images, which are all
used in our pre-training.

C. Clustering Representations

We apply the vanilla k-means algorithm on the represen-
tations extracted from the hidden layer of the projection
network, with cosine similarity as a distance metric. When
pre-training on ImageNet, we use all training images for
clustering; when pre-training on JFT-300M and YFCC, we
randomly sample 1.5 million images for clustering and ex-
tracting the centroids, and then use these centroids to assign
clustering labels to all images.

D. Run Time Analysis of DnC

While DnC has three stages of training, its computational
complexity or running time is similar as other state-of-the-
art approaches trained for the same number of epochs. As
a illustration, we compare the training FLOPs of DnC with
other methods such as BYOL, MoCLR, and SwAV. As dis-
cussed in the main paper, the base or expert training stage



Table 2. Training FLOPs of different methods per image when us-
ing ResNet-50.

SwAV BYOL MoCLR DnC

training FLOPS 38.4B 24.7B 24.7B 25.4B

of DnC has exactly the same FLOPs as the chosen base
approach, i.e., MoCLR here. The only different lies in
the third stage, where DnC requires one additional forward
pass. Therefore, for DnC we compute a weighted average
of FLOPs across three stages (we use the normalized num-
ber of training epochs as weights). Table 2 summarizes the
comparison with other approaches: DnC is comparable with
BYOL and MoCLR, while SwAV costs more flops because
it uses eight views per image per step.

Besides, we also run BYOL, MoCLR and DnC on Ima-
geNet for 3000 epochs to compare the running time. Table 3
reports the comparison when using 512 TPU v3 cores. DnC
only introduces ă5% extra training time, compared with
BYOL and MoCLR. Besides, the time cost for clustering
the representations is small, e.g., it takes about 20-30 min-
utes to extract representations on the training set and cluster
them into groups, even only with 8 V100 GPUs on a single
node.

Table 3. Training time for 3000 epochs on ImageNet when using
512 TPU v3 cores.

BYOL MoCLR DnC

training time (hours) „24 „24 „25

E. Optimization
Unsupervised pre-training. All the hyper-parameters for
optimization directly follow BYOL, except for base learn-
ing rate (which we discuss in the next paragraph). Specif-
ically, we use LARS optimizer [35] with a cosine decay
learning rate schedule [25] and a warm-up period of 10
epochs for all unsupervised pre-training. In addition, we
use a global weight decay parameter of 1.5 ¨ 10´6 while
excluding the biases and batch normalization parameters
from both LARS adaptation and weight decay. For the
momentum encoder, its parameters θEMA are updated by
θEMA “ τθEMA ` p1 ´ τqθ, where θ are the parameters
of the online encoder. The EMA parameter τ starts from
τbase “ 0.996 and is increased to one during training. Fol-
lowing BYOL, we set

τ “
∆ 1 ´ p1 ´ τbaseq ¨ pcos pπk{Kq ` 1q {2 (1)

with k the current training step and K the maximum num-

ber of training steps.
Specifically for the base learning rate, we used 0.2

for BYOL as in the original paper (we sweep over
t0.2, 0.3, 0.4u for 1000 epochs pre-training on ImageNet
to confirm 0.2 is the best). For MoCLR, we found 0.3 is
slightly better than 0.2, and therefore we kept using 0.3
for MoCLR and all stages of DnC (The only exception is
that for DnC with 1000 epoch schedule, we increase the
base learning rate to 0.5 to compensate for short train-
ing of models at each stage). The final learning rate is
scaled linearly [12] with the batch size (LearningRate “

BaseLearningRate ˆ BatchSize{256).
Linear evaluation on ImageNet/Places-365. On top of
the global pooling layer of the frozen pre-trained encoder,
we train a supervised 1000- or 365-way linear classifier, as
in [36, 30, 14, 6]. We optimize the cross-entropy loss us-
ing SGD with Nesterov momentum over 80 epochs, using a
batch size of 1024 and a cosine learning rate decay sched-
ule. We sweep the base learning rate (of batch size 256)
over t0.4, 0.3, 0.2, 0.1, 0.05u for models pre-trained on Im-
ageNet, and t1.0, 0.6, 0.4, 0.2, 0.1u for models pre-trained
on JFT-300M and YFCC. We chose the best learning rate
on a local validation set split out from the ImageNet train
set, and report the accuracy on the official ImageNet valida-
tion set.

F. Transfer to Other Datasets

F.1. Implementation: fine-grained linear classifica-
ton

We perform transfer via linear classification and fine-
tuning on the same set of datasets as in [6, 13],
namely Food-101 [3], CIFAR-10/100 [20], Birdsnap [2],
SUN397 [33], Stanford Cars [19], FGVC Aircraft [26],
PASCAL VOC 2007 classification task [10], Describable
Textures (DTD) [9], Oxford-IIIT Pets [29], Caltech-101
[11] and Oxford 102 Flowers [28]. As in [6, 13], we used
the validation sets specified by the dataset creators to select
hyperparameters for FGVC Aircraft, PASCAL VOC 2007,
DTD, and Oxford 102 Flowers. On other datasets, we use
the validation examples as test set, and hold out a subset
of the training examples as validation set while performing
hyperparameter tuning.

We follow the linear evaluation protocol of [17, 18, 6,
13]. We train a regularized multinomial logistic regression
classifier on top of the frozen representation without data
augmentation. Images are resized to 224 pixels along the
shorter side and cropped by the center 224ˆ224 pixels. We
minimize the cross-entropy objective using L-BFGS with
ℓ2-regularization, where we select the regularization param-
eters from a range of 45 logarithmically-spaced values be-
tween 10´6 and 105.



F.2. Implementation: Pascal VOC segmentation

Following BYOL, we use the same fully-convolutional
network (FCN)-based [24] architecture as [14]. The back-
bone consists of the convolutional layers in ResNet-50. The
3 ˆ 3 convolutions in the conv5 blocks use dilation 2 and
stride 1. This is followed by two extra 3 ˆ 3 convolutions
with 256 channels, each followed by batch normalization
and ReLU activations, and a 1ˆ 1 convolution for per-pixel
classification. The dilation is set to 6 in the two extra 3 ˆ 3
convolutions. The total stride is 16 (FCN-16s [24]).

Similar as BYOL, we train on the train2012 set and
report results on val2012. Hyperparameters are selected
on a 2119 images held-out validation set. Training is done
with random scaling (by a ratio in r0.5, 2.0s), cropping, and
horizontal flipping. The crop size is 513. Inference is per-
formed on the r513, 513s central crop. For training we use
a batch size of 16 and weight decay of 0.0001. We select
the base learning rate by sweeping across 5 logarithmically
spaced values between 10´3 and 10´1. The learning rate is
multiplied by 0.1 at the 70-th and 90-th percentile of train-
ing. We train for 30000 iterations, and average the results
on 5 seeds.

F.3. Implementation: COCO detection

We use the standard Mask R-CNN [15] with the
FPN [23] backbone, with cross-replica BN tuned, similar
as that in MoCo [14]. We fine-tune all layers end-to-end.
We finetune on the train2017 set („118k images) and
evaluate on val2017. We use the standard “1x schedule”.

We directly use the public Cloud TPU implementation
without modification1. Specifically, we use a batch size of
64 images split over 16 workers. We linearly warmup the
learning rate to 0.3 for the first 500 iterations, and drop it
twice by a factor of 2, after 2

3 and 8
9 of the total training

steps.

F.4. Implementation: NYU v2 depth estimation

Similar as BYOL, we follow the same protocol as in [21].
With a standard ResNet-50 backbone, we feed the conv5
features into 4 fast up-projection blocks with respective fil-
ter sizes 512, 256, 128, and 64. We use a reverse Huber loss
function for training.

The original NYU Depth v2 frames of size r640, 480s

are down-sampled by a factor 0.5 and center-cropped to
r304, 228s pixels. Input images are randomly horizontally
flipped and the same set of color transformations as in [13]
are applied. We train for 7500 steps with batch size 256,
weight decay 0.0005, and learning rate 0.16 (scaled linearly
from the setup of [21] to account for the larger batch size).

1https://github.com/tensorflow/tpu/tree/
master/models/official/detection

G. DnC with other Self-supervised Methods
While the main paper demonstrate the effectiveness of

DnC with MoCLR, we found DnC can potentially improves
other state-of-the-art self-supervised approaches as well. In
Table 4, we demonstrate that DnC can improve SimCLR
significantly and also benefit BYOL, when both pre-training
and evaluating on ImageNet.

Table 4. Applying DnC with other self-supervised methods, when
pre-training and evaluating on ImageNet.

Method w/ DnC Epochs Accuracy (%) ∆

SimCLR 1000 69.4
5000 70.2 +0.8

✓ 3000 73.0 +3.6

BYOL 1000 74.3
3000 73.9 -0.5

✓ 3000 75.1 +0.8

Besides, we notice that DnC with BYOL gets a larger
improvement when pre-training on the uncurated dataset
YFCC. As shwon in Table 5, naively extending BYOL from
1000 to 5000 epochs only increases the performance by
1.7%, while DnC-4500 leverages the computation more ef-
ficiently and improves the accuracy by 3.4%.

Table 5. Applying DnC with BYOL on YFCC pre-training. Eval-
uation is conducted on ImageNet linear evaluation.

Method w/ DnC Epochs Accuracy (%) ∆

BYOL 1000 65.3
3000 66.6 +1.3
5000 67.0 +1.7

✓ 3000 67.9 +2.6
✓ 4500 68.7 +3.4

H. Comparing with SoTA on ImageNet
Though ImageNet linear evaluation benchmark (both

pre-training and evaluating on ImageNet) is not the main
focus of this paper, we still provides a comparison between
DnC and recent SoTA methods, as shown in Table 6.

I. Additional Ablations and Results
I.1. Length of the distillation stage

While the distillation stage introduces additional FLOPs
compared to the base or expert training stage, this stage can
be short. In this section, we conduct ablation on the number
of epochs for distillation stage. We train DnC on ImageNet

https://github.com/tensorflow/tpu/tree/master/models/official/detection
https://github.com/tensorflow/tpu/tree/master/models/official/detection


Table 6. Linear evaluation benchmark on ImageNet (self-
supervised pre-training is also conducted on ImageNet). * indi-
cates using eight views for pre-training.

Method Epochs Top-1 Acc Top-5 Acc

Clustering methods with ResNet-50:
SeLa [34] 400 61.5 84.0
DeepClusterV2* [5] 800 75.2 -
SwAV* [5] 800 75.3 -

Contrastive learning with designed architecture:
AMDIM [1] 150 68.1 -
CMC [30] 240 70.6 89.7
Contrastive learning with ResNet-50:
NPID [32] 200 56.5 -
Local Agg. [37] 200 58.8 -
CPC v2 [16] - 63.8 85.3
MoCo [14] 200 60.6 -
PIRL [27] 800 67.4 -
PCL [22] 200 67.6 -
SimCLR [6] 1,000 69.3 89.0
PIC [4] 1,600 70.8 90.0
MoCo v2 [8] 800 71.1 -
SimCLR v2 [7] 1,000 71.7 90.4
InfoMin Aug. [31] 800 73.0 91.1
BYOL [13] 1,000 74.3 91.6
BYOL [13] 3,000 73.9 92.2
MoCLR (ours) 1,000 74.3 92.2
MoCLR (ours) 3,000 74.5 92.3
DnC (ours) 1,000 74.5 92.2
DnC (ours) 3,000 75.8 92.8

following the the DnC-3k schedule (i.e., 1000 epochs for
base training and 1500 epochs for experts). We vary the
number of epochs used for distillation and report the linear
evaluation accuracy in Table 7. Short distillation schedule
such as 60 epochs can yield 74.0%, as long as a larger learn-
ing rate is utilized to compensate for the smaller number of
gradient steps.

Table 7. Abalation on length of the distillation stage.

Epoch 60 100 200 300 500

Learning rate 0.45 0.45 0.35 0.35 0.3
Accuracy (%) 74.0 74.9 75.1 75.4 75.8

I.2. ℓ2-normalization on regressor output

We study whether it’s better to normalize the output of
the regressor by ℓ2-normalization in the distillation stage.
We conducted this ablation on ImageNet, and found nor-
malizing the output of the regressor actually hurts the per-
formance a bit, as shown in Table 8.

Table 8. Abalation on whether ℓ2-normalize the output of regres-
sors rb and rkpk “ 1, 2, ...Kq.

ℓ2-normalization Accuracy

Yes 75.4
No 75.8

I.3. Semi-supervised learning with projection layer

As found in SimCLR v2 [7], fine-tuning from the hidden
layer of projection head gives better semi-supervised accu-
racy. In this seciton, we also report the semi-supervised
accuracy fine-tuned from the hidden layer of the projection
head in Table 9. Models are all pre-trained using ImageNet
data.

Table 9. Semi-supervised results by fine-tuning from the first layer
of the projection head, following [6]. The encoder is ResNet-50.

Top-1 Top-5
method Label fraction Label fraction

1% 10% 1% 10%

SimCLR v2 57.9 68.4 82.5 89.2
BYOL 61.9 71.9 83.3 90.7
MoCLR 61.0 71.6 84.2 90.9
DnC 65.6 73.2 86.4 91.4

I.4. Complete results of transfer learning

In Table 10, we summarize the transfer learning re-
sults on fine-grained linear classification tasks, with dif-
ferent computational budgets in pre-training stage for each
method.

In Table 11, we provide the complete results of trans-
fer learning on COCO detection, Pascal VOC semantic seg-
mentation, and NYU depth estimation.

References
[1] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information
across views. arXiv:1906.00910, 2019. 4

[2] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L
Alexander, David W Jacobs, and Peter N Belhumeur. Bird-
snap: Large-scale fine-grained visual categorization of birds.
In CVPR, 2014. 2, 5

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In ECCV, 2014. 2, 5

[4] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang,
and Han Hu. Parametric instance classification for unsuper-
vised visual feature learning. NeurIPS, 2020. 4



Table 10. Transfer learning experiments. We evaluate models pre-trained on ImageNet, YFCC100M and JFT-300M with a linear classifier
on 12 downstream classification tasks: Food-101 [3], CIFAR-10/100 [20], Birdsnap [2], SUN397 [33], Stanford Cars [19], FGVC Aircraft
[26], PASCAL VOC 2007 [10], Describable Textures (DTD) [9], Oxford-IIIT Pets [29], Caltech-101 [11] and Oxford 102 Flowers [28].

Foo
d-1

01

CIFA
R10

CIFA
R10

0

Bird
sn

ap

SUN39
7

Cars Airc
raf

t

VOC20
07

DTD
Pets Calt

ec
h-1

01

Flow
ers

Ave
ra

ge

Y
FC

C

BYOL-1k 67.9 85.0 63.9 31.3 63.4 44.3 47.5 81.8 75.2 71.1 84.0 93.4 67.4
BYOL-3k 68.8 86.5 66.6 33.2 63.9 46.5 49.8 82.3 73.6 73.9 86.5 95.4 68.9
BYOL-5k 69.1 85.8 66.8 35.5 64.1 50.1 51.9 82.5 74.5 74.0 87.6 95.8 69.8
MoCLR-1k 67.7 87.8 69.9 29.4 63.4 41.1 45.6 81.6 75.8 67.7 85.6 92.9 67.4
MoCLR-3k 67.9 88.3 70.2 29.6 63.8 40.7 45.9 82.4 76.0 69.2 85.4 92.3 67.6
MoCLR-5k 68.4 87.6 69.7 30.5 63.9 41.0 46.7 82.4 76.2 68.5 86.0 93.0 67.8
DnC-3k 71.9 87.3 70.1 34.4 65.7 48.2 46.3 82.7 75.5 75.7 86.0 96.5 70.0
DnC-4.5k 72.1 88.0 71.1 35.5 67.2 52.6 49.2 83.7 76.5 75.9 87.0 97.8 71.4

JF
T-

30
0M

BYOL-1k 72.7 90.1 71.7 33.9 61.0 62.4 52.1 81.1 74.9 76.0 89.0 94.3 71.6
BYOL-3k 72.8 89.9 72.5 36,7 62.1 63.3 53.2 81.6 75.5 77.8 89.5 94.5 72.5
BYOL-5k 73.3 89.8 72.4 38.2 61.8 64.4 54.4 81.3 75.5 77.0 90.1 94.3 72.7
MoCLR-1k 71.9 90.4 72.7 32.8 61.3 59.3 51.6 81.5 75.4 74.5 89.3 93.9 71.2
MoCLR-3k 72.7 90.8 73.0 33.5 62.2 59.8 51.6 81.4 77.3 76.2 88.7 93.5 71.7
MoCLR-5k 72.8 90.7 72.5 33.8 62.2 60.6 50.9 81.9 75.3 75.8 89.5 93.8 71.7
DnC-3k 74.8 91.6 74.9 38.2 63.8 68.6 53.4 83.0 77.1 82.5 90.5 97.2 74.6
DnC-4.5k 78.7 91.7 74.9 42.1 65.0 75.3 54.1 83.1 76.6 86.1 90.2 98.2 76.3

Table 11. Fine-tuning pre-trained model for transfer learning experiments, including object detection on COCO dataset, semantic segmen-
tation on Pascal VOC 2012, and depth estimation on NYU v2 dataset. For the evaluation metrics of rms and rel, lower is better.

COCO object detection, 1x schedule Seg. NYU v2 depth estimation
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 mIoU ă1.25 ă1.252

ă1.253 rmsÓ relÓ

ImageNet Super. 39.5 60.1 43.3 35.4 56.9 38.1 74.4 81.1 95.3 98.8 0.573 0.127

Im
ag

eN
et BYOL-3k 40.9 (`1.4) 61.9 45.0 36.7 (`1.3) 58.5 39.2 76.3 84.7 97.0 99.1 0.525 0.126

MoCLR-3k 41.5 (`2.0) 62.3 45.4 37.0 (`1.6) 59.0 39.7 76.2 84.6 97.0 99.3 0.527 0.126
DnC-3k 41.7 (`2.2) 62.6 45.6 37.3 (`1.9) 59.2 40.1 76.9 85.1 97.0 99.2 0.525 0.124

Y
FC

C

BYOL-1k 40.8 (`1.3) 61.9 45.0 36.4 (`1.0) 58.4 38.8 75.5 85.8 97.2 99.2 0.511 0.122
BYOL-3k 41.0 (`1.5) 61.6 45.0 36.6 (`1.2) 58.5 39.2 75.5 85.2 96.9 99.0 0.537 0.124
BYOL-5k 41.1 (`1.6) 62.0 45.1 36.6 (`1.2) 58.6 38.9 75.1 83.5 96.4 99.0 0.558 0.130
MoCLR-1k 40.2 (`0.7) 61.1 44.2 36.0 (`0.6) 57.8 38.2 75.0 85.7 97.1 99.3 0.515 0.122
MoCLR-3k 40.7 (`1.2) 61.6 44.4 36.3 (`0.9) 58.3 38.8 75.3 86.6 97.2 99.3 0.502 0.120
MoCLR-5k 40.8 (`1.3) 61.7 44.8 36.6 (`1.2) 58.5 39.0 75.5 86.7 97.4 99.3 0.503 0.117
DnC-3k 41.0 (`1.5) 61.6 44.7 36.6 (`1.2) 58.5 39.5 76.1 86.7 97.3 99.3 0.506 0.117
DnC-4.5k 41.5 (`2.0) 62.5 45.6 37.0 (`1.6) 59.3 39.6 76.6 86.2 97.2 99.3 0.512 0.121

JF
T-

30
0M

BYOL-1k 40.5 (`1.0) 61.3 44.4 36.4 (`1.0) 58.2 38.8 75.5 85.8 97.1 99.2 0.519 0.121
BYOL-3k 40.5 (`1.0) 61.1 44.7 36.4 (`1.0) 57.9 39.2 75.7 85.6 97.0 99.2 0.525 0.122
BYOL-5k 40.6 (`1.1) 61.2 44.3 36.2 (`0.8) 58.1 38.8 75.8 84.4 96.5 99.0 0.544 0.129
MoCLR-1k 40.3 (`0.8) 61.0 44.2 36.3 (`0.9) 58.0 38.8 75.7 84.9 96.8 99.2 0.526 0.126
MoCLR-3k 40.5 (`1.0) 61.2 44.4 36.4 (`1.0) 58.1 39.0 75.8 85.9 97.2 99.3 0.514 0.121
MoCLR-5k 41.1 (`1.6) 62.0 45.4 36.9 (`1.5) 58.9 39.5 76.1 86.3 97.2 99.3 0.513 0.120
DnC-3k 41.6 (`2.1) 62.3 45.5 37.2 (`1.8) 59.1 39.8 76.8 86.0 97.3 99.3 0.517 0.119
DnC-4.5k 41.7 (`2.2) 62.5 45.9 37.2 (`1.8) 59.3 39.8 76.9 86.1 97.2 99.4 0.509 0.119

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In

NeurIPS, 2020. 4

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning



of visual representations. arXiv:2002.05709, 2020. 1, 2, 4
[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad

Norouzi, and Geoffrey E Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 4

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297, 2020. 4

[9] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In CVPR, 2014. 2, 5

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010. 2, 5

[11] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
CVPR, 2004. 2, 5

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.
2

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. In NeurIPS, 2020. 1, 2, 3, 4

[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 2, 3, 4

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 3

[16] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali
Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.
Data-efficient image recognition with contrastive predictive
coding. arXiv:1905.09272, 2019. 4

[17] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning. In
CVPR, 2019. 2

[18] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do bet-
ter imagenet models transfer better? In CVPR, 2019. 2

[19] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.
Collecting a large-scale dataset of fine-grained cars. 2013.
2, 5

[20] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. 2009. 2, 5

[21] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N.
Navab. Deeper depth prediction with fully convolutional
residual networks. In 3DV, 2016. 3

[22] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and
Steven CH Hoi. Prototypical contrastive learning of unsu-
pervised representations. arXiv:2005.04966, 2020. 4

[23] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 3

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 3

[25] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient
descent with warm restarts. In ICLR, 2017. 2

[26] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv:1306.5151, 2013. 2, 5

[27] Ishan Misra and Laurens van der Maaten. Self-
supervised learning of pretext-invariant representations.
arXiv:1912.01991, 2019. 4

[28] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In Indian
Conference on Computer Vision, Graphics & Image Process-
ing, 2008. 2, 5

[29] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In CVPR, 2012. 2, 5

[30] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv:1906.05849, 2019. 2, 4

[31] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning. In NeurIPS, 2020. 4

[32] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 4

[33] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010. 2, 5

[34] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling
via simultaneous clustering and representation learning. In
ICLR, 2020. 4

[35] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD
batch size to 32k for imagenet training. arXiv:1708.03888,
2017. 2

[36] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 2

[37] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
arXiv:1903.12355, 2019. 4


