
Supplementary Material

1. From Deformable to Discrete Fovea
We render SaccadeCam images with a predicted de-

formable attention mask when training end to end with
a depth network. We outline how we transfer from de-
formable to discrete fovea in our paper, but provide a more
detailed derivation of the optical knapsack algorithm here.
We must use discrete fovea because the camera imaging our
MEMS mirror has fixed spatial resolution, and we wish to
cover as much of the deformable attention mask with the
MEMS mirror as possible.

1.1. Optical Knapsack Derivation

Packing algorithm for varying fovea size: This problem
is harder than the greedy approach because the foveal mask
can change in size, which increases the number of possible
combinations of selections. We cast this as a packing prob-
lem, and such theory has been studied in many domains [1]
and the knapsack problem is a well-known example [3]. For
us, the items in the knapsack will be mirror viewing direc-
tions {(θ(V (t1)), φ(V (t1))), ...(θ(V (tn)), φ(V (tn)))}.

We propose an attention variant on the knapsack problem
that takes into account new constraints such as each mir-
ror viewpoint’s angular coverage in relation to the attention
mask, reducing overlap between viewpoints and the non-
uniformity of the attention mask space. Let the total size
FOV available for placing mirror orientations be F , and this
is determined for us by the WAC FOV. Each mirror position
has its own FOV, determined by the SaccadeCam optics.

In the knapsack context, we specify weight and value of
items. While the FOV is the weight of each mirror viewing
direction, the value is the sum of the attention mask weights
that lie within this viewing direction. We term the attention
value as ai and the FOV weight as fi. Given n mirror view-
ing directions with indices 0 ≤ i ≤ n, we want to find an
identity vector x of length n s.t. xi ∈ (0, 1) and Σixiai
is maximized whereas Σixifi ≤ F . While this problem is
NP-hard, a pseudo-polynomial dynamic programming algo-
rithm O(nA) has been proposed by dynamic programming
on an n×A array M [3].

M [0, f ] = 0 if 0 ≤ f ≤ F
M [i, f ] = −∞ if f < 0

M [i, f ] = max(M [i− 1, f ], ai +M [i− 1, f − fi]),

In the conventional knapsack algorithm, M(i, f) always
points to the largest attention value within the first i mirror
vieing directions and with the FOV constraints f — and
so M(n, F ) is the solution. For practical purposes, we can

multiply these non-integers by 10s, where s is the desired
number of significant digits.

This well-known approach fails to provide the best view-
ing directions for SaccadeCam, because greedily increasing
total attention does not guarantee non-overlap within the
sensor FOV. In other words, a set of identical mirror view-
ing directions, by with consecutively increasing concentric
FOVs would keep increasing the value but would redun-
dantly cover the same angular region.

Our solution: We adapt a previous effort in computer vi-
sion for an optical knapsack algorithm [4] and present an
attention knapsack algorithm that takes into account angu-
lar coverage by discretizing the field-of-view into β angular
regions, each with a solid angle of π

β . Our key idea, in-
spired from [4], is to create a binary array that keeps track
of the overlap of each mirror viewing direction, and the up-
date to this does not affect the overall running time of the
algorithm. We call this array K(n, β) where K(i, b) = 1 if
the corresponding mirror viewing direction covers this an-
gle and is 0 if it does not.

Our method is similar to [4], and the supplementary ma-
terial provides details. We also define the array M to be
three-dimensional of size n×F × β. As before, M(i, f, 0)
commands the maximum attention andM(n, F, 0) contains
the solution. As in [4], our attention knapsack packing al-
gorithm adds a β multiplications and β + 2 additions, still
allowing a pseudo-polynomial implementation (i.e. if the
number of discretizations due to β is reasonable. Please see
the supplementary for the full derivation.

This results in a O(nAβ) algorithm, which is still
pseudo-polynomial. As with the original knapsack prob-
lem, if the discretization of F and the angular regions β
are reasonable, the implementation is tractable. We de-
fine an array K(n, β), where K(i, b) = 1 if that optical
element covers the angular regions b in its field-of-view,
and is zero everywhere else. We also define the array M
to be three-dimensional of size n × F × β. As before,
each entry of M(i, f, 0) contains the maximum attention
that can be obtained with the first i viewpoints of FOV a
and M(n, F, 0) contains the solution to the knapsack prob-
lem. Entries M(i, f, 1) through M(i, f, β) are binary, and
contain a 1 if that angular region is covered by the elements
corresponding to the maximum field-of-viewM(i, f, 0) and
a zero otherwise. The array M is initialized as,

M [i, f, b] = 0, if 0 ≤ f ≤ F, 0 ≤ i ≤ n and 0 ≤ b ≤ β

and is recursively updated as



If f < 0 M [i, f, 0] = −∞
For any other f, for any i
If
M [i− 1, f, 0] <
ai +M [i− 1, f − fi, 0]
and∑

1≤b≤β
M [i− 1, f, b] <∑

1≤b≤β
M [i− 1, f − fi, b] ∨K[i, b]



M [i, f, 0] =

ai +M [i− 1, f − fi, 0]

M [i, f, b] =

M [i− 1, f − fi, b] ∨
K[i, b], b ∈ (1, β)

Otherwise ∀b M [i, f, b] =M [i− 1, f, b]

where ∨ represents the logical OR function. This attention
knapsack packing algorithm adds a β multiplications and
β + 2 additions to the computational cost of the algorithm.
This results in a O(nAβ) algorithm, which is still pseudo-
polynomial. As with the original knapsack problem, if the
discretization of F and the angular regions β are reasonable,
the implementation is tractable.

2. Training and Testing Details
We use similar architectures to monodepth2 for our

depth and attention networks in PyTorch. We also use the
same official Eigen data split for training, validation, and
test of monodepth2 [2].

We train our equiangular models for 20 epochs with a
1e-4 learning rate and 12 batch size. We train our foveated
depth models with the same hyperparameters as our equian-
gular models, but with the same or less number of epochs as
the equiangular models based on validation overfit. We also
initialize both foveated and equiangular depth models with
equivalent ImageNet parameters. We believe these mea-
sures ensure fair comparison between our foveated methods
and equiangular methods.
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