
Going deeper with Image Transformers

Supplementary Material

In this supplemental material, we first provide in Sec-

tion A experiments that have guided our architecture design

and hyper-parameter optimization. As mentioned in Intro-

duction and our experimental section 4, we give the details

of our experiments in Transfer learning in Appendix C and

we show additional visualizations in Appendix D.

As mentioned in the main paper, we use the same hyper-

parameters as in DeiT [64] everywhere except stated oth-

erwise. In order to speed up training and optimize mem-

ory consumption we have used a sharded training thank

to the Fairscale library (https://pypi.org/project/

fairscale/) with fp16 precision.

A. Complementary analysis

In this section we provide several analysis related to op-

timization or architectural choices.

A.1. Train deeper networks with stochastic depth

In our early experiments, we observe that Vision Trans-

formers become increasingly more difficult to train when

we scale architectures. Depth is one of the main source

of instability. For instance the DeiT procedure fails to

properly converge above 18 layers without adjusting hyper-

parameters. In the DeiT setting, we observe that the factors

that provoke divergence are also those that bring more ca-

pacity to the models: depth, width, and the number of em-

beddings processed by the transformers. The latter directly

relates to the image input resolution in our case because we

use a fixed patch size of 16×16 pixels in our experiments.

Divergence can happen lately in the process, possibly al-

most at the end of training, even after reaching a decent

temporary training accuracy. When the training diverges,

we typically observe a rapid augmentation of the train loss

and then NaN values due to fp16 precision. If we use fp32

instead with exactly the same seed, we do not observe NaN

values, but the performance degrades.

Adjusting the drop-rate of stochastic depth. The first

step to improve convergence is to adapt the hyper-

parameters that interact the most with depth, in particular

Stochastic depth [33]. This method is already popular in

NLP [21, 22] to train deeper architectures. For ViT, it was

first proposed by Wightman et al. [69] in the Timm imple-

mentation, and subsequently adopted in DeiT [64]. The per-

Table A.1. Performance when increasing the depth. We com-

pare different strategies and report the top-1 accuracy (%) on

ImageNet-1k for the DeiT training (Baseline) with and without

adapting the stochastic depth rate dr (uniform drop-rate), and

DeiT modified with Rezero and variants that were not working

for ResNeT [28]. †: failed before the end of the training. If it

reached a reasonable performance during training, we report the

last number obtained before divergence.

depth B
as

el
in

e

B
as

el
in

e
w

it
h

st
ch

.
ad

ap
t
[d

r
]

R
ez

er
o

co
n

st
an

t
sc

al
in

g

ex
cl

u
si

v
e

g
at

in
g

sh
o

rt
cu

t-
o

n
ly

g
at

in
g

li
n

ea
r

sh
o

rt
cu

t

d
ro

p
o

u
t

sh
o

rt
cu

t

12 79.9 79.9 [0.05] † † 79.7 80.4 † †

18 80.1 80.7 [0.10] † † † † † †

24 78.9† 81.0 [0.20] † † † † † †

36 78.9† 81.9 [0.25] † † † † † †

48 78.4† 80.7 [0.30] † † † † † †

layer drop-rate depends linearly on the layer depth, but in

our experiments this choice does not provide an advantage

compared to the simpler choice of a uniform drop-rate dr.

In Table A.1 we show that the default stochastic depth of

DeiT allows us to train up to 18 blocks of SA+FFN. After

that the training becomes unstable. By increasing the drop-

rate hyper-parameter dr, the performance increases until 24

layers. It saturates at 36 layers and drops.

A.2. Residual block normalization: negative results

In Table A.1 we also consider different architectural vari-

ants that He et al. [28] showed not to be working for ResNet,

but this time we evaluate their interest for image trans-

formers. As one can see, except for the exclusive gating

method, all the attempts we have done with the ViT ar-

chitecture fail to converge. As discussed in the main pa-

per, the Rezero [2] method gives some good results if we

re-introduce the warmup and Layer-normalization as a pre-

norm operator.

A.3. Design of the classattention stage

In this subsection we report some results obtained when

considering alternative choices for the class-attention stage.

I

https://pypi.org/project/fairscale/
https://pypi.org/project/fairscale/

Table A.2. CaiT models with and without distillation token. All

these models are trained with the same setting during 400 epochs.

Distillation token

Model ✗ ✓

XXS-24Υ 78.4 78.5

M-24Υ 84.8 84.7

Not including class embedding in keys of class-attention.

In our approach we chose to insert the class embedding in

the class-attention: By defining

z = [xclass, xpatches], (A.1)

we include xclass in the keys and therefore the class-

attention includes attention on the class embedding itself

in Eqn. 6 and Eqn. 7. This is not a requirement as we could

simply use a pure cross-attention between the class embed-

ding and the set of frozen patches.

If we do not include the class token in the keys of the

class-attention layers, i.e., if we define z = xpatches, we

reach 83.31% (top-1 acc. on ImageNet1k-val) with CaiT-S-

36, versus 83.44% for the choice adopted in our main paper.

This difference of +0.13% is likely not significant, therefore

either choice is reasonable. In order to be more consistent

with the self-attention layer SA, in the sense that each query

has its key counterpart, we have kept the class embedding

in the keys of the CA layers as stated in our paper.

Remove LayerScale in Class-Attention. If we remove

LayerScale in the Class-Attention blocks in the CaiT-S-36

model, we reach 83.36% (top-1 acc. on ImageNet1k-val)

versus 83.44% with LayerScale. The difference of +0.08%

is not significant enough to conclude on a clear advantage.

For the sake of consistency we have used LayerScale after

all residual blocks of the network.

Distillation with class-attention In the main paper we re-

port results with the hard distillation proposed by Touvron

et al. [64], which in essence replaces the label by the av-

erage of the label and the prediction of the teacher output.

This is the choice we adopted in our main paper, since it

provides better performance than traditional distillation.

The DeiT authors also show the advantage of consid-

ering an additional “distillation token”. In their case, em-

ployed with the ViT/DeiT architecture, this choice improves

the performance compared to hard distillation. Noticeably

it accelerates convergence.

In Table A.2 we report the results obtained when insert-

ing a distillation token at the same layer as the class token,

i.e., on input of the class-attention stage. In our case we do

not observe an advantage of this choice over hard distilla-

tion when using class-attention layers. Therefore we have

only considered hard distillation in our paper.

Table A.3. Comparison between different initialisation of the di-

agonal matrix for LayerScale. We report results with 0 initializa-

tion, Uniform initialisation and small constant initialisation. For

all approaches (including the DeiT-S baseline), we have adapted

the stochastic depth rate dr .

depth
baseline ReZero LayerScale [ε]

[dr] α = 0 λi = 0 λi = U [0, 2ε] λi = ε

12 79.9 [0.05] 78.3 79.7 80.2 [0.1] 80.5 [0.1]

18 80.7 [0.10] 80.1 81.5 80.8 [0.1] 81.7 [0.1]

24 81.0 [0.20] 80.8 82.1 82.1 [10−5] 82.4 [10−5]

36 81.9 [0.25] 81.6 82.7 82.6 [10−6] 82.9 [10−6]

A.4. Variations on LayerScale init

For the sake of simplicity and to avoid overfitting per

model, we have chosen to do a constant initialization with

small values depending on the model depth. In order to give

additional insight on the importance of this initialization we

compare in Table A.3 other possible choices.

LayerScale with 0 init. We initialize all coefficients of

LayerScale to 0. This resembles Rezero, but in this case

we have distinct learnable parameters for each channel. We

make two observations. First, this choice, which also starts

with residual branches that output 0 the beginning of the

training, gives a clear boost compared to the block-wise

scaling done by our adapted ReZero. This confirms the ad-

vantage of introducing a learnable parameter per channel

and not only per residual layer. Second, LayerScale is bet-

ter: it is best to initialize to a small ε different from zero.

Random init. We have tested a version in which we try a

different initial weight per channel, but with the same aver-

age contribution of each residual block as in LayerScale.

For this purpose we initialize the channel-scaling values

with the Uniform law (U [0, 2ε]). This simple choice choice

ensures that the expectation of the scaling factor is equal to

the value of the classical initialization of LayerScale. This

choice is overall comparable to the initialization to 0 of the

diagonal, and inferior to LayerScale.

A.5. Optimization of the number of heads

In Table A.4 we study the impact of the number of heads

for a fixed working dimensionality. This architectural pa-

rameter has an impact on both the accuracy, and the ef-

ficiency: while the number of FLOPs remain roughly the

same, the compute is more fragmented when increasing this

number of heads and on typical hardware this leads to a

lower effective throughput. Choosing 8 heads in the self-

attention offers a good compromise between accuracy and

speed. In Deit-Small, this parameter was set to 6.

A.6. Adaptation of the cropratio

In the typical (“center-crop”) evaluation setting, most

convolutional neural networks crop a subimage with a given

II

Table A.4. Deit-Small: for a fixed 384 working dimensionality

and number of parameters, impact of the number of heads on the

accuracy and throughput (im/s at inference time on a V100).

heads dim/head throughput GFLOPs top-1 acc.

1 384 1079 4.6 76.80

2 192 1056 4.6 78.06

3 128 1043 4.6 79.35

6 64 989 4.6 79.90

8 48 971 4.6 80.02

12 32 927 4.6 80.08

16 24 860 4.6 80.04

24 16 763 4.6 79.60

Table A.5. We compare performance with image transformers with

the defaut crop-ratio of 0.875 usually used with convnets, and the

simple crop-ratio of 1.0 [69]. Note that, except in this experiment,

all the results in our paper and supplemental are reported with a

crop ratio of 0.875.

Network
Crop Ratio ImNet Real V2

0.875 1.0 top-1 top-1 top-1

S36
✓ 83.4 88.1 73.0

✓ 83.3 88.0 72.5

S36↑384
✓ 84.8 88.9 74.7

✓ 85.0 89.2 75.0

S36Υ
✓ 83.7 88.9 74.1

✓ 84.0 88.9 74.1

M36Υ
✓ 84.8 89.2 74.9

✓ 84.9 89.2 75.0

S36↑384Υ
✓ 85.2 89.7 75.7

✓ 85.4 89.8 76.2

M36↑384Υ
✓ 85.9 89.9 76.1

✓ 86.1 90.0 76.3

M36↑448Υ
✓ 86.0 89.9 76.5

✓ 86.2 90.2 76.5

ratio, typically extracting a 224 × 224 center crop from

a 256 × 256 resized image, leading to the typical ratio

of 0.875. Wightman et al. [69] notice that setting this

crop ratio to 1.0 for transformer models has a positive im-

pact: the distilled DeiT-B↑ 384 reach a top1-accuracy on

Imagenet1k-val of 85.42% in this setting, which is a gain

of +0.2% compared to the accuracy of 85.2% reported by

Touvron et al. [64].

Our measurements concur with this observation: We ob-

serve a gain for almost all our models and most of the evalu-

ation benchmarks. For instance our best model M36↑448Υ
increases to 86.2% top-1 accuracy on Imagenet-val1k. Note

that in our main paper, unless stated otherwise, the accuracy

with our models is measured with a crop ratio of 0.875.

A.7. Longer training schedules

As shown in Table 4 , increasing the number of train-

ing epochs from 300 to 400 improves the performance of

CaiT-S-36. However, increasing the number of training

↑

↑

↑

↑

Figure B.1. We represent FLOPs and parameters for our best CaiT

↑384 and ↑448Υ models trained with distillation. They are com-

petitive on ImageNet-1k-val with the sota in the high accuracy

regime, from XS-24 to M-48. Convolution-based neural networks

like NFNets and EfficientNet are better in low-FLOPS and low-

parameters regimes.

epochs from 400 to 500 does not change performance sig-

nificantly (83.44 with 400 epochs 83.42 with 500 epochs).

This is consistent with the observation of the DeiT [64]

paper, which notes a saturation of performance from 400

epochs for the models trained without distillation.

B. More comparisons on Imagenet

Our main classification experiments are carried out on

ImageNet [55], and also evaluated on two variations of this

dataset: ImageNet-Real [6] that corrects and give a more

detailed annotation, and ImageNet-V2 [53] (matched fre-

quency) that provides a separate test set. In Table 5 we

compare some of our models with the state of the art on

Imagenet classification when training without external data.

We focus on the models CaiT-S36 and CaiT-M36, at differ-

ent resolutions and with or without distillation.

On Imagenet1k-val, CaiT-M48↑448Υ achieves 86.5%

of top-1 accuracy, which is a significant improvement over

DeiT (85.2%). It was the state of the art at the time of sub-

mission, on par with a recent concurrent work [8] that has

a significantly higher number of FLOPs. Our approach out-

performs the state of the art on Imagenet with reassessed

labels, and on Imagenet-V2, which has a distinct validation

set which makes it harder to overfit.

III

Table C.1. Datasets used for our different tasks.

Dataset Train size Test size #classes

ImageNet [55] 1,281,167 50,000 1000

iNaturalist 2018 [30] 437,513 24,426 8,142

iNaturalist 2019 [31] 265,240 3,003 1,010

Flowers-102 [46] 2,040 6,149 102

Stanford Cars [38] 8,144 8,041 196

CIFAR-100 [39] 50,000 10,000 100

CIFAR-10 [39] 50,000 10,000 10

Table C.2. Results in transfer learning. All models are trained and

evaluated at resolution 224 and with a crop-ratio of 0.875 in this

comparison (see Table A.5 for the comparison of crop-ratio on

Imagenet).

Model Im
ag

eN
et

C
IF

A
R

-1
0

C
IF

A
R

-1
0

0

F
lo

w
er

s

C
ar

s

iN
at

-1
8

iN
at

-1
9

EfficientNet-B7 84.3 98.9 91.7 98.8 94.7

ViT-B/16 77.9 98.1 87.1 89.5

ViT-L/16 76.5 97.9 86.4 89.7

Deit-B 224 81.8 99.1 90.8 98.4 92.1 73.2 77.7

CaiT-S-36 224 83.4 99.2 92.2 98.8 93.5 77.1 80.6

CaiT-M-36 224 83.7 99.3 93.3 99.0 93.5 76.9 81.7

CaiT-S-36 Υ 224 83.7 99.2 92.2 99.0 94.1 77.0 81.4

CaiT-M-36 Υ 224 84.8 99.4 93.1 99.1 94.2 78.0 81.8

C. Transfer learning

We evaluated our method on transfer learning tasks by

fine-tuning on the datasets in Table C.1.

Fine-tuning procedure. For fine-tuning we use the same

hyperparameters as for training. We only decrease the

learning rates by a factor 10 (for CARS, Flowers, iNatural-

ist), 100 (for CIFAR-100, CIFAR-10) and adapt the number

of epochs (1000 for CIFAR-100, CIFAR-10, Flowers-102

and Cars-196, 360 for iNaturalist 2018 and 2019). We have

not used distillation for this finetuning.

Results. Table C.2 compares CaiT transfer learning re-

sults to those of EfficientNet [63], ViT [19] and DeiT [64].

These results show the excellent generalization of the

transformers-based models in general. Our CaiT models

achieve excellent results, as shown by the overall better per-

formance than EfficientNet-B7 across datasets.

D. Visualizations

D.1. Attention map

In Figure D.1 we show the attention maps associated

with the individual 4 heads of a XXS CaiT model, and for

the two layers of class-attention. In Figure 5 to save space

we had only presented the first head and the first class-

attention. We make two observations:

• The first class-attention layer clearly focuses on the

object of interest, corresponding to the main part of

the image on which the classification decision is per-

formed (either correct or incorrect). In this layer, the

different heads focus either on the same or on comple-

mentary parts of the objects. This is especially visible

for the waterfall image;

• The second class-attention layer seems to focus more

on the context, or at least the image more globally.

D.2. Illustration of saliency in classattention

In figure D.2 we provide more vizualisations for a XXS

model. They are just illustration of the saliency that one

may extract from the first class-attention layer. As dis-

cussed previously this layer is the one that, empirically,

is the most related to the object of interest. To produce

these visual representations we simply average the atten-

tion maps from the different heads (depicted in Figure D.1),

and upsample the resulting map to the image size. We then

modulate the gray-level image with the strength of the at-

tention after normalizing it with a simple rule of the form

(x−xmin)/(xmax −xmin). We display the resulting image

with cividis colormap.

For each image we show this saliency map and provides

all the class for which the model assigns a probability higher

than 10%. These visualizations illustrate how the model can

focus on two distinct regions (like racket and tennis ball on

the top row/center). We can also observe some failure cases,

like the top of the church classified as a flagpole.

IV

Head 1 ↓ Head 2 ↓ Head 3 ↓ Head 4 ↓

Head 1 ↓ Head 2 ↓ Head 3 ↓ Head 4 ↓

Head 1 ↓ Head 2 ↓ Head 3 ↓ Head 4 ↓

Figure D.1. Visualization of the attention maps in the class-

attention stage, obtained with a XXS model. For each image we

present two rows: the top row correspond to the four heads of the

attention maps associated with the first CA layer. The bottom row

correspond to the four heads of the second CA layer.

V

fountain (57%)

American alligator (77%)

African chameleon (24%), leaf beetle (12%)

lakeside (40%), alp (19%), valley(17%)

ambulance (24%), traffic light (23%)

barbershop (84%)

soap dispenser (40%), lavabo (39%)

70 % volcano

racket (73%), tennis ball (10%)

golf ball (71%)

African elephant (57%), water buffalo (15%)

viaduct (87%)

baboon (22%), black bear (17%), hyena (16%)

convertible (27%), taxi (15%), sport car (12%), wagon (11%)

catamaran (61%)

barrow (50%), plow (26%)

monarch butterfly (80%)

minibus (21%), recreational vehicle (18%)

cup (43%), notebook computer (19%)

airliner (83%)

lakeside (24%), coral fungus (16%), coral reef (10%)

plate (50%), carbonara (18%)

flagpole (14%), dam (11%)

television (69%)

Figure D.2. Illustration of the regions of focus of a CaiT model, according to the response of the first class-attention layer.

VI

