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1. Additional Implementation Details

1.1. V2VNet

LiDAR Feature Extraction First, raw LiDAR point clouds are preprocessed to filter out points outside the region of interest

(ROI), namely [0m, 100m], [−40m, 40m] for the x and y coordinates. Point clouds are then voxelized into 15.625cm density

voxels using bilinear interpolation to calculate the weighting of each point in nearby voxels. The 3D voxel volume is then

processed as a bird’s eye view image with a 2D CNN which produces an intermediate representation to be shared.

BEV Feature Aggregation Upon receiving intermediate BEV features from other vehicles, the receiver first warps each

image into its own coordinate frame such that messages are spatially aligned and features outside the receivers ROI are dis-

carded. The messages are then fused using a graph neural network (GNN). The GNN performs 3 rounds of message passing

where GNN node states are updated with a convolutional gated recurrent unit at each step. After the final iteration, an MLP

outputs a post-aggregation BEV representation.

BEV Detection Following aggregation, the BEV image is processed with 4 multi-scale convolutional blocks similar to Incep-

tionNet [5] to capture different levels of contextual information. Finally, a detection header outputs bounding box proposals

which are then processed with non-maximum suppression.

Learning To train the model we use cross entropy loss for proposal classification and smooth L1 loss for bounding box

regression. During training, hard negative mining is used to select 20 hard negatives for each sample. We first pretrain the

detection model without any fusion and then freeze the weights of the LiDAR feature extraction network to train the network

with fusion. Both stages are trained with the same annotations and using Adam [2] with learning rate 0.001.

1.2. ShapeNet Dataset

Objects are placed onto the same table which is also taken from the ShapeNet dataset and we use the same background with

RGB (200, 200, 200). All images in this dataset is rendered using Habitat-sim [4] and we use the same lighting set up in

every picture, with 5 light sources around the center of the table. When sub sampling 50 meshes from each class, we take the

ones with the highest number of vertices to sample high quality meshes. Each agent uses a pinhole camera with a focal length

of 1.0 units. Objects are placed on to a 5x3 grid on the table and we designate regularly spaced points for object placement.

During placement, we sample one of these locations and apply a uniformly random offset bounded by 0.2 in each direction

and perform collision checking to ensure objects placements are valid.

1.3. ShapeNet Model

Image Feature Extraction: Our ShapeNet detection model closely follows prior work on active vision for drones [1]. The

model starts with a 2D U-Net [3] consisting of 4 blocks in the encoder and decoder. Each block consists of two groups of

*Equal contribution.



Clean Perturbed

Agents 2 4 6 2 4 6

Feature Fusion 82.19 89.93 92.94 7.55 52.31 76.18

Input Fusion 81.03 88.18 91.28 42.71 69.95 80.29

Output Fusion 80.32 86.69 89.76 45.27 58.71 64.82

Table 1. Performance on clean and perturbed data for input fusion,

output fusion, and intermediate feature fusion. Attack becomes with

weaker with more benign agents in all fusion methods.
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Figure 1. Attacks become stronger as attacker

gets closer to victim.

convolution, group normalization [7], and ReLU activation. In the encoder, we down sample inputs using stride 2 convolution

in the first convolution of each block. In the decoder, we up sample features using bilinear interpolation before each block.

We set the initial number of channels to be 48.

3D Feature Aggregation Following the UNet, we use the pose information of the camera and the depth values of the pixels

to unproject the pixel features into 3D voxels. For voxelization we use a 64 × 32 × 64 grid where height is the second

dimension. If multiple pixels map to the same voxel, we apply mean pooling to aggregate the features. After unprojecting

into a common 3D coordinate frame, each agent broadcasts and the features are then aggregated with mean pooling.

3D Detection Following aggregation, a 3D U-Net similar is used to process the voxel features. The 3D U-Net is similar to the

2D U-Net with 4 blocks in the encoder and decoder. Finally, a detection header processes the features to generate proposals

for each voxel.

Learning To train the model, we use Adam optimizer with learning rate 0.001, cross entropy loss for classification, and

smooth L1 loss for regression. During training, we employ hard negative mining and mine 10 hard negatives for each

sample.

2. Additional Results

Other Fusion Methods Aside from sharing learned intermediate representations, agents can alternatively share raw sensory

inputs or predicted outputs. We follow prior implementations [6] and perform input fusion by directly overlaying LiDAR

sweeps from other agents before running inference. For output fusion, we overlay output bounding boxes from other agents

and then perform non-maximum suppression to select a single box for an instance.

We conduct additional experiments of attacks on these fusion methods in Table 1 and designate one attacker amongst a vari-

able number of agents in the communication network. For input fusion we apply perturbations to each LiDAR point with

ǫ = 10cm and for output fusion we perturb bounding box parameters with ǫ = 20cm and also add N//8 fake bounding

boxes where N is the size of the unperturbed bounding box set. We find that the trend of increased robustness with more

agents still holds. However, it is difficult to compare across different fusion methods fairly as it is unclear how to set fair ǫ
constraints for all settings.

Attacker Distance In the V2V setting, agents perceive the world with a limited viewing range. Therefore, an attacker can

only influence a victim SDV where their viewing ranges overlap. Thus, we expect stronger attacks when the attacker is closer

to the victim and the overlap is maximized. We verify this intuition in Figure 1 where we plot the detection performance

after attack versus the distance between the attacker and the victim. Observe that attacks become stronger when the attacker

is close to the victim.

Cross Inference Another way to showcase the effectiveness of our proposed domain adaptation is to use the surrogate model

to process features from the victim model and evaluate the performance, which we call Cross Inference. Specifically, this



AP @ 0.7

2 Agents

ShapeNet V2V

Cross Inference ↑ Transfer Attack ↓ Cross Inference ↑ Transfer Attack ↓

Original Model 66.28 0.37 82.19 7.55

Surrogate w/o DA 0.51 66.21 2.47 81.34

Surrogate w/ DA 48.08 42.59 72.02 72.45

Table 2. Domain adaptation (DA) ablation. Cross inference refers to the surrogate model doing inference with the original model’s

intermediate feature maps. Note that a transfer attack with the original model is equivalent to a white box attack. Without domain

adaptation, the surrogate cannot use the original model’s features for inference and thus cannot produce transferable perturbations.

is evaluating the outputs of G′(F (x)) and we present results with a single attacker and victim in Table 2. Without domain

adaptation, the surrogate model is not able to interpret features generated by the victim model to produce accurate detection

outputs. However, with domain adaptation, the cross inference results are significantly better.

Qualitative Examples - V2V We provide more qualitative examples of the V2V setting in Figure 2. Furthermore, for our

proposed online attack, we demonstrate results on a snippet of the dataset and present a video of the attack in the attached

video Supplementary Video.mp4.

Qualitative Examples - ShapeNet We provide more qualitative examples in the ShapeNet setting in Table 3. The feature

volumes are visualized from bird’s eye view. After an imperceivable perturbation to the transmitted feature map, the output

detections are severely degraded. For these visualizations, we projected the 3D bounding boxes onto the images.
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Figure 2. Qualitative examples of perturbing the transmitted feature map to attack bird’s eye view vehicle detection. With imperceivable

perturbations on the messages, the detection output can be severely degraded.
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Figure 3. Qualitative examples of perturbing the transmitted feature map to attack 3D object detection on shapenet objects. With imper-

ceivable perturbations on the messages, the detection output can be severely degraded.
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