Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals:
Supplementary Materials

Wouter Van Gansbeke'* Simon Vandenhende!'* Stamatios Georgoulis?
2ETH Zurich/CVL, TRACE

KU Leuven/ESAT-PSI

The supplementary materials include the pseudocode of
our algorithm and the implementation details of the exper-
imental evaluation. Additionally, we provide overcluster-
ing results in Section [and qualitative results for semi-
supervised fine-tuning in Section|[6}

1. Pseudo-code

Algorithm [T] shows the pseudo-code of MaskContrast.
The saliency masks are obtained by running the public code
of existing saliency estimators [6l [7]]. The default hyper-
parameter settings were used. A PyTorch implementation
of our method and pre-computed saliency masks are made
publicly available: |github.com/wvangansbeke/
Unsupervised—-Semantic—Segmentation/.

2. Pre-training

This section describes the pre-training setup for the mod-
els included in the experiments section of the main paper. In
the majority of cases, we were able to use the pre-trained
weights made available by the authors of the respective
works.

Co-Occurence. We adopt the training setup from the orig-
inal work [4]. The features before the output layer of the
network are used for the purpose of training a linear classi-
fier and applying K-Means clustering.

Colorization. The pre-trained colorizer from Zhang et
al. [11] is used. It is argued that the intermediate repre-
sentations in the network will extract semantic information
in order to solve the colorization task. As a consequence, it
is non-trivial from what layer we should tap the features to
tackle the semantic segmentation task. To resolve this, we
tried using features from various intermediate layers, and
report the best results when training a linear classifier or
applying K-Means.

CMP. We follow the strategy from the colorization task for

*Authors contributed equally

Luc Van Gool'2

Algorithm 1 Pseudocode of MaskContrast.

>r query and key
(CxK)

width of an image x
alient pixels in a batch

H S S S

s

_k.params = f_g.params # initialize
for (x, s) in loader:
load a batch with N samples and N

ncy mas ks

constrain aug s.t. object area old

X_g, s_gq = aug(x, s) # igmented ve

x_k, s_k = aug(x, s) # another augmented version
g, aux = f_g.forward(x_q) # g: NxCxHxW, aux: NxHxW
k, _ = f_k.forward(x_k) # k: NxCxHxW

salient objects are non zero

valid_ids = s_g.nonzero() # valid_ids: Pxl

remap each object to a unique id in {0..N-1}

s_r = remap(s_qg) # s_r: Pxl

key prototypes: NxC

p_k = brmm (k.view(N,C,H.W), s_k.view(N,H.W,1)

p_k = normalize(p_k, dim=1) # L2-normali

p_k = p_k.detach() # no gradient to pr

select embeddings of salient objects: PxC

g = index_select (g.view (H.WxC), index=valid_ids)
positive logits: PxN

1_pos = mm(g.view(P,C), p_k.view(C,N))

negative logits: PxK
l_neg = mm(gq.view(P,C), queue.view(C,K))

logits: Px (N+K)
logits = cat([l_pos, 1l_neg], dim=1)

contrastive loss: positives are the s_r-th

MaskContrast_loss = CrossEntropyLoss (logits/t, s_r)

auxiliary BCE loss to prevent collapse
aux_loss = BCE (aux, s_q)
total_loss = MaskContrast_loss + aux_loss

SGD update: query network
total_loss.backward()
update (f_g.params)

momentum update: key network
f_k.params = mxf_k.params+ (1l-m)*f_g.params

update dictionary
enqueue (queue, p_k) # enqueue current prototypes
dequeue (queue) # dequeue earliest prototy

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation;
BCE: binary cross-entropy loss; remap: custom function.

training a linear classifier or applying K-Means. The pre-
trained model from Zhan et al. [10] is used.

github.com/wvangansbeke/Unsupervised-Semantic-Segmentation/
github.com/wvangansbeke/Unsupervised-Semantic-Segmentation/

IIC. We follow the implementation strategy from [J5].

Contrastive-Learning Methods. We used the weights
from a ResNet-50 model pre-trained on ImageNet. The
weights were made available by the authors of the re-
spective works, i.e. the instance discrimination task [9],
SWAV [1], MoCo v2 [3] and InfoMin [8]. In some cases,
multiple variants of the model were released, e.g. when us-
ing different augmentation strategies during training. We
chose the best available model each time.

The contrastive learning models were only pre-trained
on ImageNet, as we could not see any substantial improve-
ments from further pre-training them on the target dataset,
i.e. PASCAL. To obtain dense predictions, we apply dilated
convolutions in the last residual block. We use the features
from the backbone for training a linear classifier or applying
K-Means.

MaskContrast. We use a dilated ResNet-50 model with
DeepLab-v3 head as outlined in the main paper. The final
1 x 1 convolutional layer is split into two linear heads. The
first head predicts the pixel embeddings, while the second
head predicts the saliency mask. During linear evaluation,
we replace the final layer by a randomly initialized 1 x 1
convolutional layer. Other details were already provided in
the paper.

3. Linear Classifier

This section describes the training setup used for the lin-
ear evaluation protocol. We train a 1 x 1 convolutional layer
for 60 epochs using batches of size 16. The complete train
set is used during training. We optimize the weights through
stochastic gradient descent with momentum 0.9, weight de-
cay 0.0001 and initial learning rate 0.1. The learning rate
is reduced to 0.01 after 40 epochs. We found that increas-
ing the train time, or modifying the learning rate did not
improve the results.

4. Clustering

This section specifies how to obtain discrete class assign-
ments by clustering the representations using K-Means. We
follow the evaluation strategy from [5] to calculate the mean
IoU metric. In particular, we first match the predicted clus-
ters with the ground-truth classes using a Hungarian algo-
rithm. We subsequently calculate the mean IoU from the
re-assigned clusters and the ground-truth labels. We report
the average from five runs.

Contrastive based methods. As described in Section
we apply K-Means clustering to the backbone features. The
cluster assignments are upsampled to match the original im-
age resolution, before applying the Hungarian algorithm.

Init. MoCo v2 Sup.
Sup. Sal. | X v | X v
Clusters

21 35.0 38.9 |41.6 442
50 414 48.8 | 462 514
100 433 495|473 525
200 45.0 51.1 485 536
500 48.1 542|513 57.0

Table 1. Overclustering on PASCAL with MaskContrast (MIoU).
We use MoCo or supervised ImageNet initial weights, and super-
vised (v") or unsupervised (X) saliency.

IIC. No specific post-processing is required. We simply
match the predicted clusters with the ground-truth classes
following the original work [5].

Proxy-task based methods (Co-Occurence, Coloriza-
tion, CMP). We select the features for applying K-Means
as described in Section [2| The predictions are up-sampled
to match the original image resolution before applying the
Hungarian algorithm.

MaskContrast. We compute the mean embeddings of
the foreground objects and apply K-Means using the L2-
normalized feature vectors. All pixels belonging to the ob-
ject are assigned the same label as the mean-pixel embed-
ding after clustering. The predictions from the saliency es-
timation head are used to identify the background class. We
match the predictions with the ground-truth classes using
the Hungarian algorithm.

Overclustering results. K-Means does not employ any
prior world knowledge, i.e. the ground-truth or target clus-
ters are unknown. Therefore, it is unlikely that the predicted
clusters will match the target ones on a complex and imbal-
anced dataset like PASCAL. To better understand the se-
mantic structure discovered by the embedding space, we
apply overclustering. In this case, a many-to-one mapping
exists between the predicted and target clusters. Table
shows the results. The accuracy improves as we increase
the number of predicted clusters. We hypothesize that lo-
cal neighborhoods in the embedding space contain pixels
of the same or visually similar objects, which benefits the
performance when overclustering.

5. Semi-Supervised Learning

This section describes the semi-supervised learning
setup. In each case, we report the average result for three
randomly sampled splits.

ImageNet Pre-Trained Baseline. We load the pre-trained
ImageNet weights into a ResNet-50 backbone with dilated
convolutions. We use batch size of 8 and stochastic gradi-
ent descent with momentum 0.9 and learning rate 0.004 in
all data regimes. The learning rate was selected after per-

Inst. Discr.

]
o}
o

E
=

Figure 1. Qualitative comparison of the results after training a linear classifier on PASCAL. We use the MoCo weights to initialize our

backbone.

forming a grid search. Additionally, we explored the use of
different parameter groups with specific learning rate, e.g.
the decoder used 10 times higher learning rate compared to
the encoder. However, this did not result in any further im-
provements. We include a weight decay term 0.0001. A
poly learning rate scheduler is used.

MaskContrast. We use a batch size of 8 and learning rate
of 0.004 when fine-tuning with 5%, 12.5% and 100% of the
labels. Differently, when using 1% and 2% of the labels,
the learning rate is set to 0.001 for all layers in the network,
except for the final convolutional layer which uses learning
rate 0.1. The latter is well-motivated, since the complete
network, including both encoder and decoder, were already
pre-trained for the semantic segmentation task. The batch
norm stats are frozen. We use stochastic gradient descent
with momentum 0.9 and a weight decay term 0.0001. The
learning rate is decayed using a poly learning rate scheduler.

w

6. Qualitative Results

Figure [T] shows a qualitative comparison when training
a linear classifier on top of the pre-trained representations.
We compare the representations learned by our method
using an unsupervised (5th row) or supervised (6th row)
saliency estimator, against the ones from instance discrim-
ination (2nd row) [9]], SWAV (3rd row) [1]] and MoCo v2
(4th row) [2]]. The qualitative results support the claim that
our pixel embeddings learn semantically meaningful infor-
mation.

References

[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurlPS, 2020.

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020.

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

(11]

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020.

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H
Adelson. Learning visual groups from co-occurrences in
space and time. arXiv preprint arXiv:1511.06811, 2015.

Xu Ji, Jodao F Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In /CCV, 2019.

Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mum-
madi, Nhung Ngo, Thi Hoai Phuong Nguyen, Zhongyu Lou,
and Thomas Brox. Deepusps: Deep robust unsupervised
saliency prediction via self-supervision. In NeurIPS, 2019.
Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,
Masood Dehghan, and Martin Jagersand. Basnet: Boundary-
aware salient object detection. In CVPR, 2019.

Yonglong Tian, C. Sun, Ben Poole, Dilip Krishnan, C.
Schmid, and Phillip Isola. What makes for good views for
contrastive learning. arxiv preprint arXiv:2005.10243, 2020.
Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018.

Xiaohang Zhan, Xingang Pan, Ziwei Liu, Dahua Lin, and
Chen Change Loy. Self-supervised learning via conditional
motion propagation. In CVPR, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016.

