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dissecting-image-crops.

A. Dataset constraints, collection, and description

A.1 Lack of cropping

As a starting point, any sufficiently large collection of
natural photos suffices. In order to simulate scenarios
where a user only has access to pixels but not the metadata
(which commonly happens when downloading photos from
e.g. social media), no labels are needed. Training and
testing data can be retrieved ’for free’ by extracting patches
and thumbnails from any dataset consisting of real-world
images, where the only important constraint is the lack of
tampering. However, it turns out that cropping, as well as
various other kinds of ’soft tampering’, is a natural part
of the digital editing process. Because these operations
are mostly harmless and probably happen more often than
we realize, it becomes almost impossible to know to what
extent a given database really is unedited.

A.2 Sufficiently high resolution

Acknowledging the fact that the dataset might be noisy
to some degree, we proceed with adding a resolution
constraint. Image datasets for deep learning are often
down-scaled such that the maximal dimension lies around
500 to 1,000 pixels2, presumably because the benefit of an
even finer level of detail for recognizing object semantics
rarely outweighs the extra computational cost. However, in
order to better pick up lens flaws that are typically exhibited
in subtle pixel-level features, we prefer to keep the resolu-
tion higher and closer to the original photo. This matches
the observation in image forensics that resizing should be

2For example, every sample in Open Images V5 [29] has at most 1,024
pixels on its longest side.

Figure 9: Comparison of a full-frame sensor versus a crop sensor
with respect to the lens circle. (Adjusted and reprinted from [56]
with permission.)

avoided because it tends to damage high-frequency details
[38]. We decided to settle for (i.e. download images with) a
maximal dimension of 2,048 pixels for each sample, which
is deemed high enough to detect optical imperfections, but
also low enough to avoid exceeding realistic dimensions of
photos that may be shared online.

A.3 Inter-device variation considerations

Every lens and sensor is different, and this variation in
standards might make what exactly constitutes a ’crop’ less
precise. For example, if a full-frame lens is coupled with a
crop sensor (i.e. the film frame width is less than 35mm)
as in Figure 9, every resulting picture can be thought of
as inherently cropped because the light captured by the
sensor does not fully cover the lens circle. Mobile phones
have an especially large crop factor, since their sensors
are typically much smaller than those used in professional
DSLR camera systems. In fact, there is a vast number
of possible configurations, and trying to take all of them
into account would become impracticable. We thus clear
confusion by defining a ’cropped image’ to be any deviation
from what was originally captured by the imaging sensor
at the time of shooting. Since our method is camera make
and model-blind, we rely on the learning-based approach
to discover modal values within this combinatorial space
of configurations in the dataset, such that our network will
learn to take the diversity among devices and settings into
account automatically.

A.4 Scraping and dataset bias

We scraped Flickr by querying the API with 10,000
different search terms and downloading up to 500 photos
for every tag. The keywords were gathered from an online
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Figure 10: Random examples of the Flickr dataset. (Faced blurred for privacy protection.)

list of the 10,000 most commonly used words in English,
which was in turn generated by performing N-gram
frequency analysis on the Google Trillion Word Corpus
[18, 25]. The resulting database has around 1.3 million
images, which would have been 5 million if the search
results did not overlap due to many entries having multiple
tags. Note that Flickr seems to be biased toward photos (1)
depicting persons, (2) of somewhat professional quality,
and (3) taken using expensive cameras, but we view neither
of these aspects as a drawback considering the relevance
of our project to photography patterns and photojournalism.

A.5 Aspect ratio

Mixing training examples with different aspect ratios to-
gether also changes the shapes of the grid cells of Fpatch,
which should clearly be avoided. Otherwise, patches that
have the same absolute position with respect to the lens cir-
cle, might be assigned different labels depending on the as-
pect ratio of the sensor within said lens circle. Most digital
camera systems have a sensor size of 36mm×24mm, cor-
responding to an aspect ratio of 1.5. We therefore fix the
aspect ratio to 1.5 and enforce landscape-only photos (by
rotating portrait images either left or right) to further en-
hance consistency, which shrinks the pool of files meeting
all discussed criteria down to 700,000 files.

A.6 Dataset split

Lastly, we perform a 3-way train / validation / test set split
distributed as 90% / 5% / 5%. A few samples of the test set
are shown in Figure 10.

B. Shortcut mitigation

Convolutional neural networks have been shown to be
surprisingly adept at finding and leveraging often irrelevant
shortcuts [15, 43]. Here, we present our approach to ensure
that the models learn useful features.

B.1 Image patch extraction

Patches are extracted from the centers of a regularly sized
4 × 4 grid within every image (cropped or not), but we
also apply random jittering of±8 pixels in both dimensions.
This way, we discourage Fpatch from learning low-level im-
age processing-related shortcuts, for example JPEG block
artefact alignment.

B.2 Resizing global images

Since Fglobal uses a downscaled variant of the incoming im-
age with fixed dimensionality 224 × 149, but cropping an
image also changes its raw dimensions, we were obliged
to employ some tricks in order to prevent the model from
learning glitches that are unrelated to physical imaging
aberrations, notably resampling factor detection. Resam-
pling shortcuts have occurred in various previous works
[43], and are typically an undesired factor. For example,
a neural network is able to trivially distinguish images that
have been downsized starting from 2048×1365 as opposed
to starting from 1536 × 1024 based on pixel-level resam-
pling artefacts, even if the interpolation method is random-
ized [43]. To work around this issue, we perform random
resizing in multiple stages to make the original dimensions
nearly impossible to recover, without noticeably damaging
the image contents.

Given the potentially cropped source image of size W ×
H , we first resize 3 times to a random W ′ ×H ′ where W ′

is uniformly distributed in [1024, 2048], and H ′|W ′ is con-
ditionally uniformly distributed in [0.8W ′/A, 1.2W ′/A],
with A the aspect ratio. Note that the interpolation
method itself is also random, and is chosen from one of
{NEAREST, LINEAR, AREA, CUBIC, LANCZOS4} as
provided by the OpenCV library [1]. Finally, the whole im-
age is downscaled to 224× 149, and from now on it should
be nearly impossible to tell what its original resolution was.

Indeed, if we replace the cropping operation with a
rescaling to the same dimensions that the cropped image



would otherwise have, the accuracy of our global model
drops to chance (50%). This suggests that only altered im-
age contents play a role, while input resolution does not
anymore.

Note that the way in which patches are extracted re-
mains unaltered by this procedure; only thumbnails must
be treated to ensure that Fglobal predominantly looks at se-
mantically meaningful content.

B.3 Joint model

Another, more sophisticated shortcut arose which occurs
only when the model has access to both patches and thumb-
nails simultaneously. Even if the original dimensions of
a global image cannot be inferred, the integrated network
could still learn to measure how ’large’ the patches are in
comparison to the thumbnail, since they are extracted from
a ’smaller’ image if the input is cropped. To alleviate this
issue, we perform an extra random resizing step before ex-
tracting patches but after cropping, where the width is uni-
formly distributed in [1024, 2048] and the height is chosen
proportionally such that the aspect ratio is retained. This
guarantees that the fraction of the thumbnail that is being
covered by patches loses its predictive power, discourag-
ing G from trying to exploit low-level correlations among
the outputs produced by Fpatch and Fglobal. This approach
serves the additional purpose of enforcing our ignorance
about both the crop rectangle and the sequence of resizes
that images at test time could have undergone; hence, dur-
ing our evaluations, we also randomize input resolutions the
same way.

B.4 Patch labels and intra-batch interaction

We observed a peculiar effect when all the examples within
a minibatch have the same ground truth label for absolute
patch localization. Specifically, when all patches belong-
ing to the same position class were forwarded through the
network, an unnaturally high accuracy could be achieved
during training, but not during validation. This does not
occur when the batch size is just 1 instead of 64, imply-
ing that there exists an architectural feature of the neural
network that enables cross-example interaction. Although
we have not studied this aspect systematically, we speculate
that it may be due to the BatchNorm2D layers contained in
a ResNet [21], whereby the mutual information across dif-
ferent examples within every minibatch is somehow leaked
and exploited. To counter this shortcut, we cyclically shift
image patches across minibatches in order to ensure that
every minibatch contains a uniform distribution of all 16
labels, rather than all of them having the same class. The
mutual information among examples within a minibatch is
therefore minimized, and the peculiar overfitting effect dis-

Figure 11: Sample selectivity versus patch localization per-
formance. The accuracy improves significantly once we discard
more and more predictions that Fpatch is uncertain about.

(a) Fpatch (ResNet-18). (b) ImageNet-trained ResNet-34.

Figure 12: First convolutional layer filter visualization. At the
lowest level, the absolute patch localization model is clearly more
sensitive to alternations between green and magenta (i.e. lack of
green) pixel values in various directions, as compared to a vanilla
ImageNet-trained neural network.

appeared, as evidenced by the results becoming indepen-
dent of batch size.

C. Patch localization accuracy versus confidence

Figure 11 plots the accuracy of Fpatch as a function of
the response rate, where moving to the left on the horizontal
axis means that an increasingly smaller fraction of only the
patches with the highest scores are considered. This sup-
ports the earlier claim that the maximum value in the output
distribution correlates positively with the correctness of the
pretext model.

D. Convolutional filter visualization

We display and compare the values of the convolution
operations applied by the very first layers of both Fpatch



Model Color Grayscale Chance

Fpatch (patch loc.) 21% 15% 6%

Joint (crop det.) 86% 81% 50%
Global (crop det.) 79% 78% 50%
Patch (crop det.) 77% 72% 50%

Table 2: Accuracies with or without color. Removing all color
information on the test set decreases the model’s performance, but
only considerably so when a model relies on patches.

and a regular ImageNet classifier in Figure 12. These visu-
alizations suggest that the network is particularly sensitive
to green transverse chromatic aberration.

E. Additional experiments for lens-related clues

E.1 Effect of red and blue chromatic aberration

As shown in Figures 13a and 13b, the patch localization
accuracy plots appear horizontally flipped with respect to
Figure 5a. This indicates that the modal value of purple
fringing in our dataset corresponds to the green channel be-
ing scaled toward one preferred direction more often than in
the other direction. (Inward green TCA is visually the same
as a combination of outward red and blue TCA.)

E.2 Effect of color saturation and grayscale

In order to quantify the significance of color information in
general beyond just chromatic aberration, it may be instruc-
tive to control the saturation of the test set. A saturation fac-
tor of 0% is equivalent to grayscale imagery, 100% is iden-
tity, and larger numbers represent exaggerated colors. The
result is shown in Figure 13c. This feature does not depend
on the location of a patch, therefore it is not unexpected that
the best performance corresponds with untouched images.
Any other value simply moves the images away from the
expected distribution.

Table 2 also compares the performance of the model
when tested on grayscale and regular color images. Al-
though color information clearly constitutes a respectable
gain to the network’s correctness relative to chance levels,
there is a large residual gap that does not rely on color.
Apart from vignetting, we hypothesize this is mostly re-
lated to photography patterns and object priors, which we
discussed in Section 5.3. Moreover, the only model that is
likely unable to perceive lens aberrations in the first place
(global) seems to care the least about color information,
suggesting that the object priors involved in revealing crops
can be learned with minimal dependence on color.

E.3 Effect of radial lens distortion

Pincushion or barrel distortion, illustrated left and right re-
spectively in Figure 13d, arises from the fact that the mag-
nification of a scene through a lens does not stay con-
stant across the image plane, but depends on the radius
r =

√
x2 + y2 from the optical center [33]. We replicate

this distortion by applying a geometric coordinate transfor-
mation with a simple square law that scales every destina-
tion pixel (xd, yd) relative to its source (xs, ys) as follows:

d = 1 + k1r
2 (7)

(xd, yd) = (dxs, dys) (8)

Figure 13d shows the effect of inflating lens distortion on
the test set according to Equation (7-8).



(a) Red transverse chromatic aberration in the positive (outward) direction boosts performance.

(b) Blue transverse chromatic aberration in the positive (outward) direction boosts performance.

(c) Adjusting color saturation away from 100% (= identity) slightly degrades performance.

(d) The degree of radial lens distortion in our dataset may be too subtle to substantially affect the integrated crop detection model, although due to the
noisy results, this is inconclusive.

Figure 13: Extended breakdown of image attributes. See Figure 5 for the main results.


