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1. Derivation of the discrete forward models

In this section, we expose the discrete forward models
from the continuous models shown in Equation (8) and (11)
of the main paper.

1.1. Compressive Light Field Imaging

We recall the continuous forward model for compressive
light field imaging from Equation (8) :

e(x) =

∫
V

∫
∆t

S(x, t′) l(x, u)T (x+ s(u− x), t′) dudt′.

Considering K discrete time slots, the discretized form of
the coded exposure for a given pixel m in the sensor array,
can be written as:

em =

K∑
k=1

(U+1)/2∑
`=(U−1)/2

Sk
m T k

m+` lm,`, (15)

where m, ` and K are the indexes for the discretized spa-
tial, angular and time dimensions, and M,U and K are the
corresponding number of samples along these dimensions.
Note the coded aperture is defined as shifted by a given
number of pixels depending on the sub aperture image `.

We define the discrete TMCA as

T̂m =
K∑

k=1

Sk
m T k

m+`, (16)

and the discrete model of the coded exposure in (15) can be
finally expressed as

em =
K∑

k=1

(U+1)/2∑
`=(U−1)/2

T̂m,` lm,`. (17)

∗ denotes equal contributions.
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Figure 1. Learned TMCA for compressive spectral imaging.
Learned CA and shutter function for the three first time slots
k = 0, 1, 2. The resultant learned TMCA in CSI is equivalent
to a colored coded aperture shown in the last column of the figure.

1.2. Compressive spectral imaging

The continuous forward model for the coded exposure of
our compressive spectral imaging system is given in Equa-
tion (11) of the main paper:

e(x, y) =

∫
∆t

S(x, y, t′)

∫∫∫
T (x′, y′, λ, t′) I(x′, y′, λ)

h(x− S(λ)− x′, y − y′)κ(λ) dx′ dy′ dλdt′.

For a given pixel (m,n) (remember we now index the
spatial location in 2D since one of the spatial dimension
is “special” and corresponds to the dimension in which
the prism disperses light), and considering K discrete time
slots, the measurement model can be written as:

em,n =
K∑

k=1

L∑
`=1

M−1∑
i=0

N−1∑
j=0

Sk
m,n fi,j,` T

k
i,j hm−i,n−j,` (18)

where i, j are indices along the discretized spatial dimen-
sions of M,N samples each, `, k denote the indices for the



discretized wavelength and time dimensions, and L,K are
the corresponding number of samples along those.

The point spread function (PSF) h corresponds to a prop-
agation model through a unit magnification imaging optics.
Further assuming the prism features linear dispersion, the
PSF can be expressed as the shifted dirac δm−i,n−j,`. Sub-
stituting this expression in Equation (18), and simplifying,
the exposure model becomes

em,n =
K∑

k=1

L∑
`=1

M−1∑
i=0

N−1∑
j=0

Sk
i,j+` T

k
i,j fi,j,` δm−i,n−j,`,

(19)

Grouping the time variables in (19), we then define the dis-
crete TMCA:

T̂i,j,` =
K∑

k=1

Sk
i,j+` T

k
i,j . (20)

yielding the coded measurements

em,n =
L∑

`=1

M−1∑
i=0

N−1∑
j=0

T̂i,j,` fi,j,` δm−i,n−j,` (21)

2. Deriving Equation (12) from Equation (11)
Again, Equation (11) is:

e(x, y) =

∫
∆t

S(x, y, t′)

∫∫∫
T (x′, y′, t′) I(x′, y′, λ)

h(x− S(λ)− x′, y − y′)κ(λ) dx′ dy′ dλdt′.

Since h is the propagation through unit magnification imag-
ing optics and a dispersive element with linear dispersion,
the impulse response can be expressed as h(x − S(λ) −
x′, y− y′) = δ(x−λ−x′, y− y′), and the coded exposure
can be simplified as

e(x, y) =

∫
∆t

∫
S(x, y, t′)T (x− λ, y, t′)

I(x− λ, y, λ)κ(λ) dλdt′. (22)

Using the properties of dirac distributions, we express the
terms inside the integral as the following convolution

S(x, y, t′)T (x−λ, y, t′)I(x−λ, y, λ) =
∫∫

S(x′+λ, y′, t′)

T (x′, y′, t′) I(x′, y′, λ) δ(x− λ− x′, y − y′) dx′ dy′.
(23)

Substituting this expression in Equation (11) , we obtain the
following expression (Equation (12) in the main paper) for
coded exposure measurements:

e(x, y) =

∫
∆t

∫∫∫
S(x′ + λ, y′, t′)T (x′, y′, t′) I(x′, y′, λ)

δ(x− λ− x′, y − y′)κ(λ) dx′ dy′ dλdt′.
(24)
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Figure 2. Learned TMCA for compressive light field imaging.
Learned CA and shutter function for the first three time slots
k = 0, 1, 2. We use a 2D array of sub-images for visualization
of the TMCA where each sub-image represents the response of
the equivalent coded aperture to all rays arriving at one point on
the coded aperture from all points on the aperture plane. Thus,
the resultant learned TMCA is equivalent to a coded aperture with
sensitive angular pixels.

3. Metrics used for spectral imaging
Here we give the formal definitions and some intuition

about the metrics we used to evaluate the quality of our
compressive spectral imaging system.

• RMSE: The root mean square error (RMSE) is a pixel-
wise dissimilarity measure between a ground-truth
spectral image x and the reconstructed image x̂ of
N ×M pixels and L spectral bands defined as

RMSE(x, x̂) =
1

M ·N · L
||x− x̂||2. (25)

• UIQI: The universal image quality index (UIQI) was
proposed in [5] for evaluating the similarity between
two single gray scale images. This metric measure
the correlation, contrast and luminance distortion of
a reconstructed image with respect to the reference
image. The UIQI between two single-band images
a = [a1, · · · , aMN ] and â = [â1, · · · , âMN ] is de-
fined

UIQI(a, â) =
4σaâ2µaµâ

(σ2
a + σ2

â)(µ
2
a + µ2

â)
(26)

where (µa, µâ, σ
2
a, σ

2
â) are the sample means and vari-

ances of a and â, and σaâ2 is the sample covariance of
(a, â). The range of UIQI is [−1, 1] and UIQI(a, â) =
1 when a = â. Thus, the higher the UIQI, the bet-
ter spectral reconstruction. Since we work with multi-
band images, the overall UIQI metric reported on Ta-
ble I in the main paper corresponds to the average of
the UIQIs over all spectral bands.

• SAM: The spectral angle mapper (SAM) was proposed
to evaluate the quality of the recovered spectral images
by measuring the similarity between reference and es-
timated spectral signatures [3]. The SAM of two spec-



Figure 3. A diagram representing the advantages of the proposed TMCA codification against traditional CA codifications for the two
applications we study: compressive light field imaging and compressive hyperspectral imaging.

tral vectors x and x̂ is defined as

SAM(x, x̂) = arccos
(
〈x, x̂〉
‖x‖2‖x̂‖2

)
. (27)

The SAM metric reported in Table I is obtained by av-
eraging the SAMs computed from allM ·N image pix-
els. Since the SAM is an angular quantity, the value
of SAM is expressed in degrees and thus belongs to
(−90, 90]. The smaller the absolute value of SAM, the
more higher the spectral similarity is between the re-
covered image and the ground truth.

• ERGAS: The relative dimensionless global error in
synthesis (ERGAS) has been proposed to compute the
amount of spectral distortion in super resolved spectral
images [4]. Here, we employ this quantity to evaluate
the recovered spectral images:

ERGAS = 100

√√√√ 1

L

L−1∑
i=0

(
RMSE(xi, x̂i)

µi

)2

(28)

where µi is the mean of the i-th band (xi) of the spec-
tral image, and L is the number of spectral bands. The
smaller ERGAS, the smaller the spectral distortion.

• DD: The final metric reported in Table I is the degree
of distortion (DD) between two spectral images which
is defined as

DD(x, x̂) =
1

N ·M · L
‖x− x̂‖1. (29)

The smaller DD, the better the recovered spectral im-
age.

4. Simulation details

In this section we present additional qualitative results of
the simulations in compressive hyperspectral imaging and
compressive light field imaging.

4.1. Coded Hyperspectral Imaging

Training details: We learn the end-to-end model for
hyperspectral imaging using 160 spectral images from the
ICVL dataset [1]. We used cropped images at a size of
256 × 256 with L = 12 spectral bands. The L spectral
bands corresponds to the following wavelengths in nm:
[480, 500, 510, 530, 550, 560, 570, 590, 600, 620, 640, 650].
We set the number of time slots in the TMCA encoder to
K = 8. The U-Net is trained for 500 epochs using ADAM
optimizer. We applied a learning rate decay of factor 0.5
every 150 epoch with an initial rate of 0.0001. We display
the coded apertures and shutter function learned in our
pipeline in Figure 1.

Rational behind our baselines, we compare the pro-
posed TMCA codification against four different baselines:
a) the traditional CASSI codification using random binary
patterns and reconstructed using the alternative direction
method of multipliers (ADMM) b) the CASSI codification
using a trained U-Net as a decoder c) the proposed TMCA
codification and reconstruction pipeline using random (non-
optimized) codes d) the CASSI system jointly learning the
codification and the U-Net as a decoder and e) our full
TMCA codification with learned codes.

Baseline a) shows the performance of a system that does
not use our codification, and uses a conventional optimiza-
tion technique as a decoder. The baseline b) still uses the
traditional codification but now uses a modern NN decoder,
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Figure 4. Additional results for compressive spectral imaging on the ICVL 1 test fold comparing our TMCA (fifth row) against the CASSI
using a conventional optimization technique (ADMM) as a decoder (second row), a U-Net decoder (third row), and jointly learned codes
and U-Net decoder (fourth row).

thus allowing us to state that the results we observe with
baseline c) that uses our TMCA codification cannot only be
attributed to the fact we use a NN decoder, but indeed that
the TMCA codification is better. The baseline (d) employs
joint optimized codes from the CASSI system and trained
NN confirming that the gain of the proposed TMCA codi-
fication does not solely depend on the end-to-end optimiza-
tion of the optics and reconstruction algorithm. Finally, d)
shows that optimizing the TMCA codification itself is also
beneficial.

Additional qualitative results We show qualitative re-
sults for a few more reconstructed hyperspectral images in
Figure 4.

Mapping spectral bands to RGB Our hyperspectral im-
ages are mapped to an RGB composite image by select-
ing three spectral channels corresponding to wavelengths
of 650,550 and 480 nm.

Spectral signatures We show qualitative and quantitative
comparisons of the full spectral signatures (L = 12) for two
different points taken in a randomly sampled image of the
ICVL 1 dataset in Figure 5 and show qualitatively L = 6
bands for two other randomly sampled images in Figure 8.

Sensitivity to noise and shutter length We performed
additional experiments varying the Gaussian readout noise
for a constant shutter length (K = 8) and varying the shut-
ter length for a fixed level of noise. The results can be found
in Table 1 and 2 showing the less noise the better. We find
an optimal shutter length value to be K = 16.

σ2 = 10−4 10−3 10−2 10−1

PSNR 32.051 31.723 31.311 30.207
UIQI 0.979 0.976 0.977 0.965
SAM 5.43 5.73 5.98 6.86

ERGAS 12.57 12.92 13.49 15.41
DD 0.017 0.018 0.019 0.022

Table 1. Adding additive gaussian noise (ICVL 1 dataset)
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Figure 5. Spectral signatures for two points in an image randomly
sampled from the ICVL 1 dataset. The L = 12 spectral bands
are shown for a point in the sky and a point in the sand on the re-
constructions performed by our method using TMCA and learned
codes and the conventional CASSI with a U-Net.

K = 2 4 8 16

PSNR 31.032 30.937 31.723 31.858
UIQI 0.971 0.972 0.976 0.978
SAM 6.29 6.21 5.73 5.54

ERGAS 14.17 14.04 12.92 12.63
DD 0.021 0.020 0.018 0.018

Table 2. Varying the shutter length (ICVL 1 dataset)

4.2. Compressive Light Field Imaging

Training details: We learn our end-to-end model for
compressive light field imaging by using the aggregate
dataset described in the main paper. For, this experiment
we aim to recover light fields with 5× 5 angular views and
resolution of 480× 270 to match with the spatial resolution
of the experimental setup. We also set the number of time
slots in the TMCA encoder to K = 8. We use randomly
cropped patches of those images of spatial size 11× 11 for
training, the decoder is the deep spatial-angular convolu-
tional sub-network proposed in [2] which is trained for 500
epochs using ADAM optimizer. Similar to the spectral ap-
plication, we applied a learning rate decay of factor 0.5 ev-
ery 150 epochs with an initial rate of 0.0001. We display the
learned coded apertures and shutter function in our pipeline
in Figure 2. We use a 2D array of sub-images for visual-
ization of the TMCA where each sub-image represents the
response of the equivalent coded aperture to all rays arriv-
ing at one point on the coded aperture from all points on the
aperture plane.

Additional qualitative results We show qualitative re-
sults for the central view of four additional reconstructed
light fields in Figure 9 and show the 5× 5 reconstructed an-

objective lens

LCoS

beam splitter

DSLR

Figure 6. A photograph of the optical setup used in our compres-
sive light field imaging experiments. The light path is shown in red
and the various components are labelled (detailed components’ de-
scription is found in the main paper).

gular views of yet another light field from the Lytro dataset
in Figure 10.

Rational behind our baselines The rational behind our
baselines for compressive light field imaging is the same
as for hyperspectral imaging. Baseline a) uses the tradi-
tional codification and an ADMM decoder while b) swaps
the ADMM for a deep neural network [2] and shows the NN
alone does not explain the better results obtained in baseline
c) with our TMCA codification with random codes. Base-
line d) jointly optimizes traditional codification with a deep
decoder shows that the improvement of e) our TMCA cod-
ification with learned codification cannot be only attributed
to the end-to-end optimization.

Sensitivity to noise and shutter length We show quan-
titative results for an additional experiments varying the
Gaussian readout noise for a constant shutter length (K =
8) and varying the shutter length for a fixed level of noise.
The results can be find in Table 3 and 4 showing the less
noise the better as expected and an optimal shutter length
value for K = 8.



σ2 = 10−4 10−3 10−2 10−1

PSNR 34.67 33.57 31.65 28.98
SSIM 0.923 0.911 0.851 0.772

Table 3. Adding additive Gaussian noise (Light-field Lytro dataset)

k = 2 4 8 16

PSNR 34.11 34.66 34.67 34.47
SSIM 0.894 0.908 0.911 0.916

Table 4. Varying the shutter length (Light-field Lytro dataset)

Figure 7. A photograph of the optical setup implementing our hy-
perspectral compressive imaging system. The light path is shown
in red and the various components are labelled (a detailed compo-
nents’ description is found in the main paper.)

5. Optical setups
Compressive light field imaging The setup consists of
an objective lens projecting the image on a LCoS imaged
with a DSLR (equipped with its objective lens) through a
beamsplitter. The component details are given in the main
paper. A photography of the setup used in our experiments
in shown in Figure 6.

Compressive hyperspectral imaging The setup consists
of an objective lens projecting the image on a DMD im-
aged with a monochromatic CCD through a relay lens and
prism dispersing light. The component details are given in
the main paper. A photography of the setup used in our
experiments in shown in Figure 7.
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Figure 8. Results of our compressive spectral imaging reconstruction on two synthetic images of the ICVL 1 Dataset showing 6 different
spectral bands (out of L = 12).
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Figure 9. Additional light field results comparing our codification with TMCA using the deep network [2] as a decoder against (fourth
row) the CLFP baselines with a sparse dictionnary coding method as a decoder (second row) and the same codification also using the deep
network architecture from [2] (third row). Numbers in the top right corner indicate PSNR compared to the ground truth (first row).

Figure 10. The 5× 5 angular views reconstructed from a randomly sampled light field of the Lytro dataset comparing our method with the
CLFP baseline.


