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Figure 7: Subsampling without low-pass filtering causes the
spectra to overlap and become corrupted. Left: after sub-
sampling spectra could overlap, which is called aliasing;
Right: subsampling preceded by low-pass filtering with an
ideal low-pass filter prevents corruption.
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A. The power spectral density of Binomial fil-
ters

This section reiterates the Fourier transform and its prop-
erties, and we provide the Fourier transforms for the filters
used in our anti aliasing method. For a full exposition to the
Fourier transform and frequency analysis please see [18].
In general the Fourier transform has both magnitude and
phase components, our discussion focuses on the magnitude
which is referred to as the power spectral density.

Figure 7 depicts the basic theory of frequency aliasing.
When a signal is subsampled it’s spectrum is replicated at
distances inversely proportional to the sampling rate. Fre-
quencies from these copies additively spill into the orig-
inal signal, corrupting the original frequency components
(“Aliasing after Sub-Sampling”). This aliasing can be pre-
vented by the application of a low-pass filter, by which the
lower-frequency components of the original signal can be
preserved.

We use binomial filters as a low-pass filter because of
their finite support size. Here we discuss the power spectral
density of the 1D filter, which could be extended to the 2D
case by an outer product. Examples of discrete binomial
filters include [1,2, 1], [1,4, 6,4, 1], etc, which can be gen-
erated from Pascal’s triangle. Using the bracket [-] to index
the signal, x, and defining the discrete Dirac delta function
as 0, the filters of interest in our work are defined as:

z1[n] =dn — 1]+ 2[n] + d[n + 1]

xa[n] = 8[n — 2| +46[n — 1] + 66[n] + 46[n + 1]+
dn+ 2]

x3[n] = d[n — 3] + 66[n — 2] + 156[n — 1] + 204 [n]+

150[n + 1] + 66[n + 2] + d[n + 3]

Using the Fourier identities from Equations 1, we obtain
the the corresponding signals in Fourier domain, denoting
the angular frequency with w:

z1[w] =2 + 2 cos(w)
za[w] = 6 + 8 cos(w) + 2 cos(w)
z3[w] = 20 + 30 cos(w) + 12 cos(2w) + cos(3w)

Figure 8 shows the power spectral densities (magnitude
of Fourier transform). This diagram highlights the trade-
offs. A filter with larger support size, £k = 7, attenuates
more power at the cut-off frequency. However, more of the
frequencies just below the cut-off frequency are also atten-
uated. A filter with smaller support size, &£ = 3, attenuates
less power at the cut-off frequency, but maintains more in-
formation from the high frequencies just below the cut-off
frequency.

Z z[ne™"" = zfw] (1a)
d[n] =1 (1b)

8[n — ng) = ewmo (1c)

d[n— k] + d[n + k] = 2 cos(wk) (1d)

— Ideal filter
Size =3
— Size=5
— Size=7
0.5

.

-0.5 -0.25 0. 0.25 0.5
Normalised frequency

Filter response (% power)

Figure 8: Power spectral density for filters used for anti-
aliasing. The blue curve indicates an ideal filter for a sub-
sampling with stride 2. However, as an ideal filter is too
computationally expensive, we plot three alternatives of
varying support size.



B. On Smooth activations

The optimal placement criteria presented in subsec-
tion 4.1 argues in favor of preserving the information en-
coded in high frequencies through layers that do not cause
aliasing. Next, in subsection 4.2, our definition of the alias-
ing critical path claimed that the activation function non-
linearity may produce high-frequency content. These argu-
ments sustain the placement of low-pass filters in our mod-
els and its relation to activation functions (point-wise non-
linearities) present in the original architecture.
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Figure 9: Illustration of the spectrum changes caused by
non-linear activation functions. First row shows three dif-
ferent inputs, each containing a different sinusoidal wave.
Comparison between ReLU and smooth activations (GeLU
and Swish) illustrates the impact on the spectra of the re-
sulting signals. Left: spatial-domain representation. Right:
frequency-domain representation.

This section illustrates the changes in spectral distribu-
tion caused by non-linear activation functions. Note that
they introduce high-frequency components only if the in-
puts to the activation function span the non-linearity, i.e.
for the activation functions considered here, inputs must be
positive and negative.

Without loss of generality, Figure 9 illustrates the change
in the power spectral density of 1D signals under differ-
ent activation functions. The first row shows both spatial
(z) and frequency domain (F) representations of 1D sinu-
soidal waves, each containing a single frequency, i.e. this is
our input signal without the application of any non-linearity.
The following rows illustrate the spatial and frequency do-
main representations corresponding to the output of differ-
ent non-linearities. The “elbow” spatial-domain character-
istic (around zero) imposed by ReLU is reflected in the re-

sulting frequency-domain representation with the introduc-
tion of higher frequency components that were not present
in the original input. The power of these new components
decreases with their frequency. The results obtained by ap-
plying smooth-activation (GeLU and Swish) to the same
input signal also introduces new high frequency compo-
nents, but with much faster decay. The proofs of the duality
between spatial smoothness and frequency component de-
cay can be found in [15] (page 41 shows that smoothness in
time/spatial-domain implies decay in frequency-domain).

The use of smooth activations were previously shown to
improve robustness to adversarial attacks [28]. The results
of the ablation studies presented in sections 5.3 and 5.4 ex-
tend these findings to show their impact on a broader con-
cept of 0.0.d. robustness.

Figure 10 complements the results presented in Fig-
ure 5 by including the performance gains across different
spectral bands for a model trained using smooth activa-
tion (“Swish”) and also a model combining anti-aliasing
with smooth activation and data augmentation (“Anti-
aliasing + Rand Augmentation +Swish”). Similar to data-
augmentation alone, smooth activations lead to improved
performance mainly when the in lower bins are filtered, in
contrast to the anti-aliasing which improves performance
across the entire spectrum. The figure also shows that the
combined model presents the best results at all frequency
ranges, extending the benefits of using smooth activation
functions, initially observed mainly in the lower frequen-
cies, to the entire spectrum.

Figure 11 depicts a random sample of images and the
corresponding images with various frequency bands re-
moved. Note that when high frequency bands are filtered
the images appear nearly indistinguishable from the origi-
nals.

C. EfficientNets

Large EfficientNet models are constructed by ex-
panding a baseline model (EfficientNet-BO) in terms of
model depth, model width, and input image resolution.
For instance, EfficientNet-BO adopts an input image of
224 %224, EfficientNet-B1 scales it to 240x240 pixels and
EfficientNet-B7 up to 600x600 pixels.

The results presented in this section were obtained with
a EfficientNet-BO in order to contrast the impact of alias-
ing on ResNet with EfficientNet models without introduc-
ing confounding effects related to input resolution. Table 4
shows that EfficientNet-BO models also benefit from the
introduction of small non-trainable low pass filters. This
effect holds when training from ImageNet and using Ran-
dAugmentation. A comparison to ResNet-50 results shows
that the impact of aliasing is smaller in EfficientNet-BO —
perhaps as a result of the fact that neural architecture search
may have found an architecture which partially mitigates
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Figure 10: Illustration of the relative performance impact on pre-trained models when tested on images that have 1/16 of
their spectral band removed. Our anti-aliased model performance is higher than the baseline in all spectral bands. The use
of smooth activation functions alone have a larger impact in lower bands. The combined model (AA+DA+Swish) combines
the advantages of all three. Note that this figure illustrates relative improvements to the baseline results taken under the same
experiment. Baseline degradation curve is presented in Figure 5
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Figare 11: Original and filtered test images pairs to illustrate the effect of the notch filter on each of the 16 frequency
intervals (in order starting from lowest band). They are wrongly classified by the baseline model and correctly classified by
the data-augmented model (bin 1) or the anti-aliased model (bin 2 - bin 16), but not by both.

Shot Noise Impulse Defocus Blur Frosted Glass Blur

Model Top-1 Acc.

Resnet-50 76.49 4 0.06

Resnet-50 Anti-aliased T147 + 012

Resnet-50 + Rand-Augmentation 77.38 £ 0.06

Resnet-50 Anti-Aliased + Rand-Augmentation 78.85 £ 0.2

EfficientNet-BO 76.40 + 001

EfficientNet-BO Anti-aliased (k=3) 76.65 £+ 0.12

EfficientNet-BO Anti-aliased (k=5) 76.58 4 0.07

b A L EfficientNet-BO + Rand-Augmentation 76.98 +o.14

Brightness Contrast ) ] ] EfficientNet-BO Anti-Aliased (k=3) + Rand-Augmentation ~ 77.17 +o0.10

EfficientNet-BO Anti-Aliased (k=5) + Rand-Augmentation T7.12+ 008

Table 4: Comparison of the impact of aliasing on top-1 ac-

curacy of EfficientNet versus Resnet models for input image

Figure 12: Left: ImageNet-C corruptions. Right: Sam- with resolution 224 x 224. Table contains corresponding

ples from all 10 data sources included in the Meta-Dataset baselines, our anti-aliased versions and their combinations

benchmark. Figure from Hendrycks and Dietterich [11]. with data-augmentation. The values correspond to the mean
accuracy over 3 runs with different seeds. Anti-aliased
models present the best performance, but impact on Resnet-
50 is larger than on EfficientNet-BO. Resnet-50 contains
aliasing critical paths that lack a minimum size to represent

these effects. EfficientNet models critical paths have a small low-pass filters, while EfficientNet-B0 don’t have such crit-

3 x 3 filter (Figure 4) that justifies the relative lower impact ical bottlenecks.

of anti-aliasing the EfficientNet model when compared to

the impact observed on Resnet models. These results con-

firm our hypotheses that adding anti-aliasing to the critical

paths is necessary in complement to the existing filters ca-

pacity (originally composed by 3 x 3 filters).



Blur filter location Noise Blur Weather Digital mCE Clean err.

Method skip max-pool block-conv ~ Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 Published [11] 80 82 83 75 89 78 80 78 75 66 57 71 85 7T T7T 76.7 23.9
BlurPool [30] v v v 73 T4 76 74 8 78 77 77T 72 63 56 68 8 71 71 73.4 23.0
Ours v 68 70 70 72 87 78 75 73 69 50 53 66 81 84 68 70.9 22.9
Ours v 70 72 73 72 87 80 79 72 69 51 54 67 83 84 68 72.0 234
Ours v 70 72 T2 72 88 80 77 73 69 50 53 66 81 84 67 71.6 23.2
Ours v v 69 71 72 72 87 79 76 72 68 50 52 64 81 84 68 70.9 225
Ours v v 70 71 73 72 80 79 75 71 67 51 53 67 82 85 68 71.2 229
Ours v v 68 70 70 72 8 82 75 72 62 50 52 66 81 81 66 70.0 225

Table 5: Corruption Error (CE) on Imagenet-C corruptions, mCE, and Clean Error values when including our anti-aliasing
variations. ResNet-50 and training for 90 epochs. Lower is better. We see that adding anti-aliasing decreases the errors
on all corruptions except for Pixel and Blur. The errors were computed on the model achieving the median performance on
ImageNet across 3 seeds. In our models, blur is not applied at the first convolutional layer (due to its large spatial support) and
on the other sub-sampled modules it is applied at the precise location sustained by spectral analysis, ie. at the sub-sampling
operation before its non linearities, as opposed to after as in [30].

Blur filter placement Noise Blur Weather Digital mCE Clean err.

Method skip max-pool block-conv ~ Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright ~Contrast Elastic Pixel JPEG

Baseline 70 72 72 71 87 79 76 73 69 51 53 66 81 81 67 71.2 22.6
RandAugment** [5] 60 58 60 70 90 76 80 70 67 44 50 57 80 86 64 67.4 22.8
Ours + RandAugm.** v 60 60 60 70 85 72 76 69 65 42 48 55 80 86 62 66.2 21.8
Ours + RandAugm.** v v 58 57 59 70 85 72 76 69 66 42 48 56 78 82 62 65.2 21.5
Ours + RandAugm.** v v 58 58 59 70 86 74 75 69 64 41 47 55 79 83 62 65.4 21.5
Ours + RandAugm.** v v 59 58 61 70 84 75 76 69 65 41 48 55 80 82 61 65.5 21.6
Swish 7172 74 69 88 80 76 74 69 51 54 68 81 80 67 71.6 22.4
Swish + Rand Augm. 61 61 62 69 88 73 78 69 67 42 49 55 81 87 63 66.9 21.9
Ours + Swish + Rand Augm. v 59 59 59 69 85 74 76 59 65 42 47 55 78 79 62 65.1 21.4
Ours + Swish + Rand Augm. v 60 59 60 69 85 73 76 67 65 42 47 55 78 82 62 65.3 21.4
Ours + Swish + Rand Augm. v v 60 60 63 69 86 71 75 68 64 41 47 55 78 83 62 65.3 21.1
Ours + Swish + Rand Augm. v v 60 59 61 69 8 71 75 68 64 41 47 55 78 81 61 64.9 21.2

Table 6: Corruption Error (CE), mCE, and Clean Error values when including our anti-aliasing variations on top of ResNet-50
and training for 180 epochs with data augmentation. Adding anti-aliasing leads to a lower error than all existing models with
the exception of ANT. ANT uses adversarial training and has an extra generative network, is significantly more expensive to
train, has a higher clean error and has comparable Corruption Error to our simple modification. The errors were computed
on the model achieving the median performance on ImageNet across 3 seeds. In our models, anti-aliasing is applied before
the non linearities, as opposed to after as in [30].

D. ImageNet-C: Robustness to Natural Cor-
ruptions

ImageNet-C [1 1] is a dataset used for evaluating the ro-
bustness of classifiers under natural image corruptions. It
consists of the ImageNet validation set corrupted with 15
(plus four optional) types of natural corruptions under var-
ious severity levels (Figure 12 depicts ImageNet-C exam-
ples). These corruptions distort the distribution of the im-
age spectra to varying degrees. In contrast to previously
proposed methods [ 11, 12, 23], which achieve increased ro-
bustness (0.0.d.) at the cost of reducing i.i.d. performance
(i.e. ImageNet validation without corruptions), we demon-
strate that our method is the first to achieve state-of-the-art
robustness without compromising accuracy on i.i.d perfor-
mance. We show that our proposed architecture is com-

plementary to data-augmentation and helps to achieve new
state-of-the-art results on ImageNet-C. This result also sug-
gests that anti-aliasing cannot be fully learned using exist-
ing augmentation strategies alone, without further architec-
ture modifications.

Table 5 further detail the comparison between our anti-
aliased model and Zhang’s model [30] on ImageNet-C,
when trained under the same number of epochs. It de-
picts the impact of aliasing in each of our model compo-
nents (from Figure 3). Note that anti-aliasing the strided-
skip connections alone already surpass Zhang’s results in
both ImageNet and ImageNet-C. Our combined model fur-
ther improves the results using fewer and smaller filters.

Table Table 6 confirms the complementary impact of
anti-alias in relation to data-augmentation and smooth ac-
tivation functions in this 0.0.d. setting. It contains baselines



Model | ImageNet ImageNet-R  ImageNet-V2
Baseline 76.7 244 64.6
Zhang ’19 [30] 77.2 24.1 65.0
Anti aliased (ours) 77.5 25.2 65.2

Table 7: Out of distribution generalization of anti aliased
models compared to [30]

obtained with data-augmentation and/or the use of smooth
activation functions alone, and contrasts them with the re-
sult obtained when also combining our anti-aliased model.
The combination of the three improved both ImageNet and
ImageNet-C results.

E. Additional experiments with Out-of-

distribution Generalization

Here we report results on two additional o0.0.d. general-
ization tasks for the models trained with anti aliasing filters.
In Section 5.3 we analysed the robustness on ImageNet-C,
which consists of synthetic perturbations. Here we make a
1-to-1 comparison with [30] on two datasets which repre-
sent natural robustness:

1. ImageNet-V2 [21] are images similar to those found in
the ImageNet dataset. However this version was col-
lected again in 2019. A high accuracy on this dataset
indicates a better generalization to the new collec-
tion policy of ImageNet-V2, despite the original au-
thors showing lower accuracy of most models on this
dataset.

2. ImageNet-R [10] are renditions of the ImageNet
classes, but in different styles such as sketches, paint-
ings, or sculpture. Higher accuracy on this dataset
indicates robustness to rendering method and image
style.

In order to replicate [30]’s pipeline we also trained our
models for 90 epochs. As discussed in Section 2, our mod-
els prevent aliasing in the feature maps of the neural net-
works, we expect our models to generalize better to these
out-of-distribution datasets. Table 7 shows our results. The
table shows that our anti aliased models have better o.0.d.
generalization than [30], while maintaining similar accu-
racy on ImageNet. Specifically, anti aliasing improves from
24.2 to 25.2 on ImageNet-R, while [30] scores 24.1. We
speculate this is due to many high frequency patterns in
the renditions of ImageNet-R. Secondly, on ImageNet-V2
the baseline is 64.6, [30] scores 65.0, and our anti aliased
model has the best accuracy at 65.2. While not the focus
of our work, we show that the anti-aliasing approach shows
higher accuracies on natural robustness.
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Figure 13: Our anti aliased models evaluated on two addi-
tional 0.0.d. generalization tasks (described in Appendix E.
Higher accuracy indicates better 0.0.d. generalization. On
all four datasets, we observe a complementary benefit of
data augmentation with our anti aliasing method. Aug refers
to a model trained with data augmentation.

& EE S TEEZENTE AREE

“NPNE BB SIS Ny O W lﬁ
ThAE QEan #uﬂ. EEm™ 0

B BB .2 E B s @ﬂ

Omniglot Aircraft Birds Textures

ARE CEEE BEEO SNsSE
W EETNN CHEE a0 Naai
L EEE &sEH HMME S10)E €65
EEER PHNE EEEE BB - EERA

Traffic Signs  MSCOCO

ImageN et

QuickDraw Fungi Flower

Figure 14: Samples from all 10 data sources included in the
Meta-Dataset benchmark. Figures taken from Triantafillou
et al. [20], respectively.

Secondly, we analyse the complementary effect of anti
aliasing and data augmentation on o.0.d. generalization.
In section 5.3 we observed a complementary effect of
anti aliasing and training with data augmentation. Fig-
ure 13 shows the same models evaluated on ImageNet-R
and ImageNet-V2. For both datasets, our proposed anti
aliasing method brings an improvement over the baseline.
Moreover, combined with data augmentation, the increase
in accuracy (and thus robustness) is higher than the im-
provements of either method alone.

F. Few-shot classification, Meta-Dataset, and
SUR

The objective behind few-shot classification is to create
models which can learn on new problems with only a hand-
ful of labeled training examples. The evaluation procedure
it prescribes is to form test episodes by subsampling classes
from a held-out set of classes and sampling examples from
those classes that are partitioned into a support (i.e. train-



Data source Preprocessing SUR* Stride 1

Imagenet AR 43.31 46.40
Omniglot 1 97.28 97.11
Aircraft W 90.11 90.88
Birds N 70.87 75.41
Textures W 66.98 71.17
Quick Draw ™ 81.66 82.39
Fungi N 65.84 70.95
VGG Flower N 86.08 88.60

Average accuracy 75.27 77.86

Table 8: Subsampling in the first convolutional layer
(i.e. before the first residual block) has a major impact on
episodic validation performance for SUR trained on Meta-
Dataset. Since the backbones are trained on 84 x 84 images,
different datasets will require different amounts of upsam-
pling or downsampling (upwards and downwards arrows
in the Preprocessing column). For datasets requiring large
amounts of downsampling (i.e. all datasets except Omniglot
and QuickDraw), removing subsampling in the first convo-
lutional layer (Stride I column) shows clear benefits when
compared with SUR’s ResNet-18 implementation (SUR*
column).

ing) and a query (i.e. test) set of examples. The model
is tasked with training on the support set and is evaluated
on its query set accuracy, finally the query set accuracies
of many test episodes are averaged to obtain a measure of
model performance on new learning problems. A detailed
description of the setup can be found in [26].

Meta-Dataset [26] is a large-scale few-shot classifica-
tion benchmark that was introduced as a more realistic and
challenging alternative to popular benchmarks such as mini-
ImageNet [27]. While mini-ImageNet is constructed out of
ImageNet classes (using 64, 16, and 20 classes to sample
training, validation, and test episodes, respectively), Meta-
Dataset is constructed out of many heterogeneous datasets
whose classes are themselves partitioned into training, val-
idation, and test sets of classes. Meta-Dataset, therefore, is
a more challenging dataset in terms of robustness to distri-
bution shift, which is compounded by the fact that two of
its data sources (MSCOCO and Traffic Signs) are strictly
reserved for test episodes (Figure 14 depicts Meta-Dataset
examples).

SUR [6] tackles Meta-Dataset’s domain heterogeneity
by training separate backbones for each of the 8 data
sources that define a training split of classes. Each back-
bone is trained to minimize classification error by sam-
pling batches from its corresponding training set of classes.
Hyperparameter selection is performed by evaluating on
episodes sampled from each backbone’s corresponding val-
idation set of classes using a nearest centroid classifier
(NCC) on top of the backbone embedding. Finally, dur-
ing testing, all backbone embeddings are individually gated

and concatenated to form a single representation used by a
NCC. An optimization loop searches for the optimal gating
coefficients using the loss on the support set, and predic-
tions for the query set are made using the gating coefficients
found by the optimization loop.

For our experiments we retrained SUR’s 8 ResNet-18
backbones on their corresponding Meta-Dataset datasets
using the original open source codebase and hyper-
parameters. We note that SUR’s codebase is affected by a
bug that causes the examples of each class to be visited in a
deterministic order when sampling episodes. This bug was
fixed in our experiments. > This impacts both training and
evaluation (Traffic Sign evaluation is particularly sensitive
to the issue), which is why our reported baseline accuracies
differ from those reported in the original SUR paper (the
margin being wider for Traffic Signs).

SUR’s preprocessing pipeline resizes the images of
Meta-Dataset from their native resolutions to 84 x 84, us-
ing a bilinear interpolation [6]. In order to isolate the impact
of this processing on aliasing artifacts, we look at its effect
on episodic validation performance. As a reminder, valida-
tion for each backbone is performed using episodes sam-
pled from its corresponding validation set of classes, which
means that the combination of different backbones is elim-
inated as a potential confounding factor. Table 8 shows that
backbones for which the input data needs heavy downsam-
pling (represented by multiple downward pointing arrows
in the Preprocessing column) benefit the most from the ab-
lation of subsampling in the network’s first convolutional
layer.

Table 9 shows the impact of combining anti-aliasing
with smooth GELU activation functions on Meta-Dataset’s
test episode accuracies. Adding low-pass filters on the
skip connections yields an average accuracy of 74.80%
(Anti-aliased skip + GELU). Including low-pass filters at
all downsampling operations does not significantly improve
average performance (74.82%). We highlight that an aver-
age improvement of 3.75% (absolute) was obtained (includ-
ing a 2.73% improvement on out-of-domain tasks). Note
that this was achieved with only minor changes to the archi-
tecture while using the default hyper-parameters.

3h:tps :/ / github . com / google-research / meta-dataset /

issues/54



SUR* Anti-aliased GELU Anti-aliased + GELU
Data source k=3 k=5 k=3 k=5
Imagenet 53774110 57324113 58.46+108 56.81+111 59.91+106 60.59+1.04
Omniglot 95.81+£036 96.11+036 95.87+036 96.294+032 96.06+033 96.45+0.31
Aircraft 87.474+049 89.224043 89.54+045 88.364+056 90.764046 90.34+0.50
Birds 72444098 78.70+087 77.864082 72.814089 78.524081 79.9640.79
Textures 68.96+077 71294090 72.08+078 72.59+080 74.40+073 74.98+0.50
QuickDraw 81.58+060 82.30+054 82.29+056 83.05+054 84.01+054 83.18+053
Fungi 65.67+£101  69.87+093 71.07+098 67.91+£1.03 72.88+092 73.50+0.89
VGG Flower 87.61+063 89.04+055 87.69+060 87.55+058 88.81+052 89.31+048
Traffic Signs 51754106 51.05+£1.09 55.52+103 53.51+106 S51.55+101 53.51+104
MSCOCO 48954110 48304109 49.61+105 49.71+105 50.28+1.04 50.72+1.02
MNIST 94.04+049 92.90+055 92.11+056 95.42+043 93.84+051 91.02+045
CIFARIO 62.45+091  66.22+084 66.06+085 63.20+101 69.60+0.77 69.29+0.71
CIFAR100 53.12+110 56.80+104 57.03+105 56.814+121 61.58+104 59.61+1.02
Average 71.05 73.02 73.48 72.62 74.79 74.80
Average (in-domain) 76.66 79.23 79.37 78.17 80.67 81.04
Average (out-of-domain) 62.06 63.07 64.07 63.73 65.37 64.83

Table 9: Evaluation of SUR models on 600 test episodes from Meta-Dataset. Columns: SUR shows baseline performance
using original backbones. Anti-aliased: shows the effect of adding blur to strided-skip connections with different blur
kernel sizes (k), GELU: replaces ReLLU activations with GELU, Anti-aliased + GELU: combines the anti-aliased model
with GELU activations. Meta-Dataset Anti-aliased backbones used stride 1 in the first convolutional layer with input size
84 x 84. Conclusions: adding blur at skip connections improves performance with or without GELU activations. GELU
actions improve performance on their own. The best result is achieved by combining blur on skip connections with GELU

activations.



