






Blur filter location Noise Blur Weather Digital mCE Clean err.

Method skip max-pool block-conv Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 Published [11] 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77 76.7 23.9

BlurPool [30] X X X 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4 23.0

Ours X 68 70 70 72 87 78 75 73 69 50 53 66 81 84 68 70.9 22.9

Ours X 70 72 73 72 87 80 79 72 69 51 54 67 83 84 68 72.0 23.4

Ours X 70 72 72 72 88 80 77 73 69 50 53 66 81 84 67 71.6 23.2

Ours X X 69 71 72 72 87 79 76 72 68 50 52 64 81 84 68 70.9 22.5

Ours X X 70 71 73 72 80 79 75 71 67 51 53 67 82 85 68 71.2 22.9

Ours X X X 68 70 70 72 85 82 75 72 62 50 52 66 81 81 66 70.0 22.5

Table 5: Corruption Error (CE) on Imagenet-C corruptions, mCE, and Clean Error values when including our anti-aliasing

variations. ResNet-50 and training for 90 epochs. Lower is better. We see that adding anti-aliasing decreases the errors

on all corruptions except for Pixel and Blur. The errors were computed on the model achieving the median performance on

ImageNet across 3 seeds. In our models, blur is not applied at the first convolutional layer (due to its large spatial support) and

on the other sub-sampled modules it is applied at the precise location sustained by spectral analysis, ie. at the sub-sampling

operation before its non linearities, as opposed to after as in [30].

Blur filter placement Noise Blur Weather Digital mCE Clean err.

Method skip max-pool block-conv Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Baseline 70 72 72 71 87 79 76 73 69 51 53 66 81 81 67 71.2 22.6

RandAugment** [5] 60 58 60 70 90 76 80 70 67 44 50 57 80 86 64 67.4 22.8

Ours + RandAugm.** X 60 60 60 70 85 72 76 69 65 42 48 55 80 86 62 66.2 21.8

Ours + RandAugm.** X X 58 57 59 70 85 72 76 69 66 42 48 56 78 82 62 65.2 21.5

Ours + RandAugm.** X X 58 58 59 70 86 74 75 69 64 41 47 55 79 83 62 65.4 21.5

Ours + RandAugm.** X X X 59 58 61 70 84 75 76 69 65 41 48 55 80 82 61 65.5 21.6

Swish 71 72 74 69 88 80 76 74 69 51 54 68 81 80 67 71.6 22.4

Swish + Rand Augm. 61 61 62 69 88 73 78 69 67 42 49 55 81 87 63 66.9 21.9

Ours + Swish + Rand Augm. X 59 59 59 69 85 74 76 59 65 42 47 55 78 79 62 65.1 21.4

Ours + Swish + Rand Augm. X X 60 59 60 69 85 73 76 67 65 42 47 55 78 82 62 65.3 21.4

Ours + Swish + Rand Augm. X X 60 60 63 69 86 71 75 68 64 41 47 55 78 83 62 65.3 21.1

Ours + Swish + Rand Augm. X X X 60 59 61 69 85 71 75 68 64 41 47 55 78 81 61 64.9 21.2

Table 6: Corruption Error (CE), mCE, and Clean Error values when including our anti-aliasing variations on top of ResNet-50

and training for 180 epochs with data augmentation. Adding anti-aliasing leads to a lower error than all existing models with

the exception of ANT. ANT uses adversarial training and has an extra generative network, is significantly more expensive to

train, has a higher clean error and has comparable Corruption Error to our simple modification. The errors were computed

on the model achieving the median performance on ImageNet across 3 seeds. In our models, anti-aliasing is applied before

the non linearities, as opposed to after as in [30].

D. ImageNet-C: Robustness to Natural Cor-

ruptions

ImageNet-C [11] is a dataset used for evaluating the ro-

bustness of classifiers under natural image corruptions. It

consists of the ImageNet validation set corrupted with 15

(plus four optional) types of natural corruptions under var-

ious severity levels (Figure 12 depicts ImageNet-C exam-

ples). These corruptions distort the distribution of the im-

age spectra to varying degrees. In contrast to previously

proposed methods [11, 12, 23], which achieve increased ro-

bustness (o.o.d.) at the cost of reducing i.i.d. performance

(i.e. ImageNet validation without corruptions), we demon-

strate that our method is the first to achieve state-of-the-art

robustness without compromising accuracy on i.i.d perfor-

mance. We show that our proposed architecture is com-

plementary to data-augmentation and helps to achieve new

state-of-the-art results on ImageNet-C. This result also sug-

gests that anti-aliasing cannot be fully learned using exist-

ing augmentation strategies alone, without further architec-

ture modifications.

Table 5 further detail the comparison between our anti-

aliased model and Zhang’s model [30] on ImageNet-C,

when trained under the same number of epochs. It de-

picts the impact of aliasing in each of our model compo-

nents (from Figure 3). Note that anti-aliasing the strided-

skip connections alone already surpass Zhang’s results in

both ImageNet and ImageNet-C. Our combined model fur-

ther improves the results using fewer and smaller filters.

Table Table 6 confirms the complementary impact of

anti-alias in relation to data-augmentation and smooth ac-

tivation functions in this o.o.d. setting. It contains baselines





Data source Preprocessing SUR* Stride 1

Imagenet ↓↓↓ 43.31 46.40

Omniglot ↓ 97.28 97.11

Aircraft ↓↓↓ 90.11 90.88

Birds ↓↓↓ 70.87 75.41

Textures ↓↓↓ 66.98 71.17

Quick Draw ↑↑ 81.66 82.39

Fungi ↓↓↓ 65.84 70.95

VGG Flower ↓↓↓ 86.08 88.60

Average accuracy 75.27 77.86

Table 8: Subsampling in the first convolutional layer

(i.e. before the first residual block) has a major impact on

episodic validation performance for SUR trained on Meta-

Dataset. Since the backbones are trained on 84×84 images,

different datasets will require different amounts of upsam-

pling or downsampling (upwards and downwards arrows

in the Preprocessing column). For datasets requiring large

amounts of downsampling (i.e. all datasets except Omniglot

and QuickDraw), removing subsampling in the first convo-

lutional layer (Stride 1 column) shows clear benefits when

compared with SUR’s ResNet-18 implementation (SUR*

column).

ing) and a query (i.e. test) set of examples. The model

is tasked with training on the support set and is evaluated

on its query set accuracy, finally the query set accuracies

of many test episodes are averaged to obtain a measure of

model performance on new learning problems. A detailed

description of the setup can be found in [26].

Meta-Dataset [26] is a large-scale few-shot classifica-

tion benchmark that was introduced as a more realistic and

challenging alternative to popular benchmarks such as mini-

ImageNet [27]. While mini-ImageNet is constructed out of

ImageNet classes (using 64, 16, and 20 classes to sample

training, validation, and test episodes, respectively), Meta-

Dataset is constructed out of many heterogeneous datasets

whose classes are themselves partitioned into training, val-

idation, and test sets of classes. Meta-Dataset, therefore, is

a more challenging dataset in terms of robustness to distri-

bution shift, which is compounded by the fact that two of

its data sources (MSCOCO and Traffic Signs) are strictly

reserved for test episodes (Figure 14 depicts Meta-Dataset

examples).

SUR [6] tackles Meta-Dataset’s domain heterogeneity

by training separate backbones for each of the 8 data

sources that define a training split of classes. Each back-

bone is trained to minimize classification error by sam-

pling batches from its corresponding training set of classes.

Hyperparameter selection is performed by evaluating on

episodes sampled from each backbone’s corresponding val-

idation set of classes using a nearest centroid classifier

(NCC) on top of the backbone embedding. Finally, dur-

ing testing, all backbone embeddings are individually gated

and concatenated to form a single representation used by a

NCC. An optimization loop searches for the optimal gating

coefficients using the loss on the support set, and predic-

tions for the query set are made using the gating coefficients

found by the optimization loop.

For our experiments we retrained SUR’s 8 ResNet-18

backbones on their corresponding Meta-Dataset datasets

using the original open source codebase and hyper-

parameters. We note that SUR’s codebase is affected by a

bug that causes the examples of each class to be visited in a

deterministic order when sampling episodes. This bug was

fixed in our experiments. 3 This impacts both training and

evaluation (Traffic Sign evaluation is particularly sensitive

to the issue), which is why our reported baseline accuracies

differ from those reported in the original SUR paper (the

margin being wider for Traffic Signs).

SUR’s preprocessing pipeline resizes the images of

Meta-Dataset from their native resolutions to 84 × 84, us-

ing a bilinear interpolation [6]. In order to isolate the impact

of this processing on aliasing artifacts, we look at its effect

on episodic validation performance. As a reminder, valida-

tion for each backbone is performed using episodes sam-

pled from its corresponding validation set of classes, which

means that the combination of different backbones is elim-

inated as a potential confounding factor. Table 8 shows that

backbones for which the input data needs heavy downsam-

pling (represented by multiple downward pointing arrows

in the Preprocessing column) benefit the most from the ab-

lation of subsampling in the network’s first convolutional

layer.

Table 9 shows the impact of combining anti-aliasing

with smooth GELU activation functions on Meta-Dataset’s

test episode accuracies. Adding low-pass filters on the

skip connections yields an average accuracy of 74.80%

(Anti-aliased skip + GELU). Including low-pass filters at

all downsampling operations does not significantly improve

average performance (74.82%). We highlight that an aver-

age improvement of 3.75% (absolute) was obtained (includ-

ing a 2.73% improvement on out-of-domain tasks). Note

that this was achieved with only minor changes to the archi-

tecture while using the default hyper-parameters.

3https : / / github . com / google-research / meta-dataset /

issues/54



SUR* Anti-aliased GELU Anti-aliased + GELU

Data source k = 3 k = 5 k = 3 k = 5

Imagenet 53.77±1.10 57.32±1.13 58.46±1.08 56.81±1.11 59.91±1.06 60.59±1.04

Omniglot 95.81±0.36 96.11±0.36 95.87±0.36 96.29±0.32 96.06±0.33 96.45±0.31

Aircraft 87.47±0.49 89.22±0.43 89.54±0.45 88.36±0.56 90.76±0.46 90.34±0.50

Birds 72.44±0.98 78.70±0.87 77.86±0.82 72.81±0.89 78.52±0.81 79.96±0.79

Textures 68.96±0.77 71.29±0.90 72.08±0.78 72.59±0.80 74.40±0.73 74.98±0.80

QuickDraw 81.58±0.60 82.30±0.54 82.29±0.56 83.05±0.54 84.01±0.54 83.18±0.53

Fungi 65.67±1.01 69.87±0.93 71.07±0.98 67.91±1.03 72.88±0.92 73.50±0.89

VGG Flower 87.61±0.63 89.04±0.55 87.69±0.60 87.55±0.58 88.81±0.52 89.31±0.48

Traffic Signs 51.75±1.06 51.05±1.09 55.52±1.03 53.51±1.06 51.55±1.01 53.51±1.04

MSCOCO 48.95±1.10 48.30±1.09 49.61±1.05 49.71±1.05 50.28±1.04 50.72±1.02

MNIST 94.04±0.49 92.90±0.55 92.11±0.56 95.42±0.43 93.84±0.51 91.02±0.45

CIFAR10 62.45±0.91 66.22±0.84 66.06±0.85 63.20±1.01 69.60±0.77 69.29±0.71

CIFAR100 53.12±1.10 56.80±1.04 57.03±1.05 56.81±1.21 61.58±1.04 59.61±1.02

Average 71.05 73.02 73.48 72.62 74.79 74.80

Average (in-domain) 76.66 79.23 79.37 78.17 80.67 81.04

Average (out-of-domain) 62.06 63.07 64.07 63.73 65.37 64.83

Table 9: Evaluation of SUR models on 600 test episodes from Meta-Dataset. Columns: SUR shows baseline performance

using original backbones. Anti-aliased: shows the effect of adding blur to strided-skip connections with different blur

kernel sizes (k), GELU: replaces ReLU activations with GELU, Anti-aliased + GELU: combines the anti-aliased model

with GELU activations. Meta-Dataset Anti-aliased backbones used stride 1 in the first convolutional layer with input size

84 × 84. Conclusions: adding blur at skip connections improves performance with or without GELU activations. GELU

actions improve performance on their own. The best result is achieved by combining blur on skip connections with GELU

activations.


