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1. Introduction
The supplemental material contains

• a video visualizing the input/ouput, policy decisions, frame state and information gain, as shown in Figure 2 of the
manuscript,

• the complete derivation of the reinforcement learning loss function given in Section 3.5 of the maniscript,

• the full numeric results of Section 4.3 of the manuscript.

2. Reinforcement learning
This section gives the full derivation of the reinforcement loss (Eq. 7 in the manuscript). The dependence on the time step

t is omitted for simplicity of notation.
The policy predicts actions A with the goal of maximizing the expected reward, within the computational budget con-

straint, based on the input state St. Actions A are given by the actions of the individual blocks b in the image:

At = [a1, . . . , ab, . . . , aB ] ∈ {0, 1}B .
With ab = 1 resulting in execution of block b.
Actions should maximize the reward per image, with the objective given by

maxJ (θ) = maxEA∼πθ
[
R(A)

]
. (1)

We define the total reward as the sum of the block rewards in the image:

R(A) =
B∑
b=1

[
Rb(ab)

]
. (2)

Assuming that block actions are independent, the objective to be maximized is then given by

maxJ (θ) = max

B∑
b=1

(
Eab∼πb,θ

[
Rb(ab)

])
(3)

withRb the reward based on the Information Gain IG as described in Section 3.5 in the manuscript. The policy network’s
parameters θ can then be updated using gradient ascent with learning rate α:

θ ← θ + α∇θ[J (θ)] . (4)

The gradient of the objective is given by:

∇θJ (θ) = ∇θ
B∑
b

(
Eab∼πb,θ

[
Rb(ab)

])
. (5)

1



The expected value over ab is the sum of all possible values of ab, weighted by the probability πb,θ(ab | St):

∇θJ (θ) = ∇θ
B∑
b

∑
ab={0,1}

πb,θ(ab|St)Rb(ab). (6)

Using the sum-rule

∇θJ (θ) =
B∑
b

∑
ab={0,1}

∇θπb,θ(ab|St)Rb(ab) (7)

and the log-derivative trick

∇θJ (θ) =
B∑
b

∑
ab={0,1}

πb,θ(ab|St)
∇θπb,θ(ab|St)
πb,θ(ab|St)

Rb(ab) (8)

results in

∇θJ (θ) =
B∑
b

∑
ab={0,1}

πb,θ(ab|St)∇θ log πb,θ(ab|St)Rb(ab). (9)

The sum over ab can be replaced by the expectation:

∇θJ (θ) =
B∑
b

(
Eab∼πb,θ

[
∇θ log πb,θ(ab|St)Rb(ab)

])
. (10)

In practice, the expectation is approximated using Monte-Carlo sampling. Maximizing the objective is equivalent to
minimizing the loss function

L = −
B∑
b=1

(
Rb(ab)log πb,θ(ab | St)

)
. (11)

3. Semantic segmentation full results
The numeric results of Figure 7 in the manuscript can be found in Table 1. Inference times are as reported in the respective

references, while also a normalized inference time is calculated based on the GPU power, in order to be equivalent of an
Nvidia GTX 1080 Ti. The scaling factors to normalize inference time are given in Table 2.
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Table 1: Results on CityScapes validation set and comparison to other methods for video semantic segmentation. Normalized
inference time is scaled by GPU power, to be equivalent to an Nvidia GTX 1080 Ti GPU.

baseline accelerated

method GPU architecture mIoU inference time inference time
(norm) mIoU inference time inference time

(norm)
BlockCopy+DeepLab (t=0.3)

1080 Ti DeepLabV3+ RN101 76.2% 204 ms 204ms

69.8 % 132 ms 132 ms

BlockCopy+DeepLab (t=0.5) 74.9 % 156 ms 156 ms

BlockCopy+DeepLab (t=0.7) 75.8 % 175 ms 175 ms

BlockCopy+SwiftNet (t=0.3)

1080 Ti SwiftNet RN50 77.7% 90 ms 90ms

70.8 % 50 ms 50 ms

BlockCopy+SwiftNet (t=0.5) 76.4 % 63 ms 63 ms

BlockCopy+SwiftNet (t=0.7) 77.4 % 77 ms 77 ms

Accel-18

[5] (CVPR2019) Tesla K80 DeepLab-RN101 75.2% 740 ms

72.1 % 440 ms 159 ms

Accel-34 72.4 % 530 ms 192 ms

Accel-50 74.2 % 670 ms 243 ms

Accel-101 75.5 % 870 ms 315 ms

LLVSS
[6] (CVPR2018) unknown N.A. - - -

76.9 % 171 ms -

LLVSS-LL 75.9 % 119 ms -

DVSNet-DeepLabV2

[9] (CVPR2018) 1080 Ti

DeepLabV2 74.8 % 555 ms 555 ms 70.3 % 120 ms 120 ms

DVSNet-DeepLab-Fast DeepLab-Fast 73.5 % 165 ms 165 ms 71.9 % 83 ms 83 ms

DVSNet-DeepLab-Fast DeepLab-Fast 73.5 % 165 ms 165 ms 70.4 % 54 ms 54 ms

OKSS [1] (ICCE-Asia2020) Titan XP - - - - 74.2 % 250 ms 233 ms

Awan and Shin [2] (ICAIIC2020) Titan XP DeepLabV3 RN50 74.9 % 670 ms 623 ms 74.1 % 340 ms 316 ms

DFF [10] (CVPR2017) Tesla K40 71.1 % 658 ms 292 ms 69.2 % 178 ms 79 ms

BMV-prop-mv
[4] (ECCVW2018) unknown DeepLab 75.2% 770 ms

67.5 % 178 ms -

BMV-prop-mv 71.2 % 290 ms -

ClockWork [8] (ECCV2016) unknown FCN - - - 64.4 % 83 ms -

NetWarp [3] (ICCV2017) Titan X PSPNet-SSc 79.4 % 3000 ms 1764 ms 80.6 % 3040 ms 1788 ms

GRFP [7] (CVPR2018) Titan X - - - 69.4 % 1̃700 ms 1000 ms

Table 2: GPU performance and scaling factors

GPU TFLOPS factor

Nvidia GTX 1080 Ti 11.34 x1.0
Nvidia Titan XP 12.15 x1.07
Nvidia Titan X 6.691 x0.60
Nvidia Tesla K40 5.046 x0.44
Nvidia Tesla K80 4.113 x0.36
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