
Appendix
The supplementary materials include:
• Appendix A: Additional experimental results for

MNIST and CIFAR10.
• Appendix B: Proof of arguments in GEM discussion.
• Appendix C: Comprehensive reproducibility details.

A. Additional results
Due to space constraints in the main paper, in this section

we report the additional results.

Learning trajectory MNIST. Figure 1 illustrates the learn-
ing trajectory projection in parameter space for MNIST.
The CIFAR10 and Mini-Imagenet results are reported in the
main paper, for which the findings extend to this MNIST se-
quence as well.

Loss of linear interpolations MNIST and CIFAR10. Fig-
ure 2 reports the loss for linear interpolations in parameter
space for MNIST and CIFAR10. Results for Mini-Imagenet
are reported in the main paper. Notably, CIFAR10 w1 to
w2 does not overfit significantly on the rehearsal memory.
However, training is only done for one epoch per task and
after training three more tasks with the rehearsal memory,
w5 reports near zero loss for the rehearsal memory, indicat-
ing overfitting. This shows that rehearsal may overfit more
on the rehearsal memory as the training sequence length
increases, either by more tasks (e.g. CIFAR10) or more
epochs per task (e.g. Mini-Imagenet with 10 epochs per
task).

MNIST high-loss ridge aversion. We provide additional
experiments for other commonly used rehearsal memory
sizes (0.2k and 2k) in the MNIST setup [1, 3, 8].

Experiment Rehearsal memory size |M|
200 2000

MNIST
ER 81.8± 0.7 91.8± 0.4
ER-step 87.6± 1.1 (n=20) 92.6± 0.3 (n=5)

Table 1: Additional MNIST avg. accuracy results for mem-
ory sizes 200 and 2000, comparing ER and ER-step for the
high-loss ridge aversion experiment with n the number of
steps.

B. Loss constraints: GEM vs. Rehearsal
In GEM [4], the updates of the model are restricted to

the directions where the loss on the memory samples de-
creases or remains equal. This is imposed by requiring
gn · gi ≥ 0,∀i with gn the gradient on the new batch and
gi on sample i in the rehearsal memory. This is a first-order

approximation, hence it is only exact where the loss surface
is linear.

In contrast, in rehearsal an increase of the loss on the
memory samples is allowed, as long as it is smaller or equal
than the decrease in loss on the new batch. We proof this in
the following.

A model update with SGD is calculated as:

w′ ← w − αg (1)

with gradient g and learning rate α. If we assume the first
order approximation to hold in an α-region around w, then
because the negative gradient is either zero or points in a
direction with decreasing loss, it follows that

L(w′) ≤ L(w) ,
Lm(w′) + Ln(w

′) ≤ Lm(w) + Ln(w) ,

Lm(w′)− Lm(w) ≤ Ln(w)− Ln(w
′) , (2)

with L the average of the loss on the memory Lm and the
loss of the new batch Ln. Therefore, based on the same first
order approximation as in [4], Eq. 2 shows that rehearsal
only allows increases in loss on the memory as large as the
decrease in loss on the new batch.

C. Reproducibility details
This section provides all the details to maintain repro-

ducibility of our experiments. Furthermore, our codebase
provides the original implementation in Pytorch to repro-
duce our results1.

C.1. Empirical evidence Hypotheses 1 and 2

MNIST is trained with a two-layer MLP, with each layer
400 ReLU nodes. Optimization of the model uses vanilla
stochastic gradient descent (SGD), with a constant learning
rate of 0.01. Each update is performed on a batch of 10
new and 10 memory samples. The rehearsal memory has a
fixed capacity of 50 samples per task. This fixed capacity is
allocated before training to enable analyzing overfitting for
static task-specific rehearsal memory’s. Online training is
performed as each sample is only seen once during training,
except for the memory samples. The MNIST split results in
T1 containing 0’s and 1’s and T2 containing 2’s and 3’s.
CIFAR10 training details are equal to those of MNIST, ex-
cept for the model and the memory capacity. The model
used is the reduced Resnet18, introduced by by Lopez-Paz
et al. [4]. T1 of CIFAR10 consists of planes and cars and
T2 contains birds and cats, following the standard split. The
memory capacity is 100 samples per task.
Mini-Imagenet training details are equal to those of CI-
FAR10, except for training 10 epochs per task rather than

1Code released upon paper acceptance: github.com/*******



Figure 1: Projection of MNIST learning trajectories in parameter space on the plane defined by w1, w2 and w2,FT . For the
same T2 test loss (blue), the loss for T1 (red) is calculated in two different ways. left: T1 loss for the vast test set. right: T1
loss for the limited rehearsal memory.

MNIST

CIFAR10

Figure 2: Avg. loss and standard deviation on linear paths between the models used in the empirical evidence of hypotheses
one and two. Training is performed on MNIST (top) and CIFAR10 (bottom) and sampled 100 times for different model
initializations and memory populations. A path from wi to wj is calculated as (1 − α)wi + αwj . (a) and (b): Loss on the
linear path between the model after learning T1 (w1) and the model after learning with rehearsal on T2 and T5 respectively.
(c) and (d): Loss of the path between two models learned with different memory populations, after T2 and T5 respectively.
Red is the loss on the T1 testset, green the average loss of all tasks up to T2 and T5 respectively. Results contained no outliers
with a higher loss on the path compared to the loss of the models.

training online. For Mini-Imagenet there is no standard split
and the categories were assigned randomly to a task, but re-
mained the same in all experiments. As in CIFAR10, the
memory capacity is 100 samples per task.

C.2. High-loss ridge aversion

This section details the learning details for the
high-loss ridge aversion experiments. All bench-
marks use a gridsearch for the number of steps n ∈
{0, 1, 2, 3, 4, 5, 10, 20, 50}, with n = 0 the Experience Re-



play (ER) baseline. We report the best results from this
gridsearch for ER-step with n > 0, following the proce-
dure in [4]. All results are obtained with 10 epochs per task.
In contrast to the hypothesis experiments discussed in Ap-
pendix C.1, this experiment allows for a dynamically sub-
divided rehearsal memory instead of a fixed allocation over
all tasks. We use this memory policy in this experiment as
it is commonly used in literature and allows exploiting the
full memory capacity [7, 1, 2].

MNIST has the same setup as in Appendix C.1, except with
10 epochs per task and learning rate 0.001 to allow smaller
steps when training only on the rehearsal memory.

CIFAR10 and Mini-Imagenet follow the reduced
Resnet18 setup with Stable-SGD [6] for CIFAR100 in [5].
That is, Stable-SGD is used to obtain wider minima, with
momentum 0.8 and initial learning rate 0.1, where we used
a decaying factor per task t of 0.8t. The fixed dropout rate
0.1 is obtained from gridsearch in values [0.1, 0.25].

C.3. Projection plots

The loss contour plots in the parameter space as in Fig-
ure 1 are inspired by recent work [5]. They show a hyper-
plane in the parameter space, defined by three points w1,
w2 and w3. Orthogonalizing w2 − w1 and w3 − w1 gives a
two dimensional coordinate system with base vectors u and
v. The value at point (x, y) is then calculated as the loss
of a model with parameters w1 + u · x + v · y. For more
details, we refer to our code or the appendix in [5]. The
training trajectories shown in these figures are from a single
run and are the projections of the points in the parameter
space to this hyperplane. The projection of w′ is calculated
as u · (w′ − w1) and v · (w′ − w1). The indicated points
are each 50, 50 and 100 steps apart for respectively MNIST,
CIFAR10 and Mini-Imagenet.
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