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Ablation Study - Additional Tests and Images

Compression Level Estimation  

Below we compare the results produced by our per-image compression factor estimation, next to using a 
fixed value = 1000 as done in “Deep High Dynamic Range Imaging of Dynamic Scenes” SIGGRAPH 
2017. This fixed value (center column) led to a slight over compression in the luminance map of the 
Motorcycle and a clear under compression in the Belgium House image below. In both these examples, 
our image dependent factor (right column) brought most of the pixels to a visible range and maintained a 
consistent level of image contrasts.
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As expected, also the final images produced by training and inferring by applying a fixed level of 
compression show an inconsistent appearance due to the different dynamic range they had at the input.

No trans. Square root trans.

Augmenting the Skip-Connection with Square-Root Transformation 

The following table shows the images resulting with and without augmenting the skip 
connections with a smooth transformation. The lack of one (left column) shows a coarse action 
over the image with noticeable over - and undershooting effects. The use of a square-root (right 
column) almost completely eliminates these effects.
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Effect of the Discriminators at Different Image Scales

The following table shows the results obtained by training our network using discriminator at 
different scales. From this comparison it is clear that when omitting discriminators at certain scales 
(coarse scale or two in the right columns of the table), the network does not reproduce the missing 
(by the prior TRC step) contrasts at these scales. 

One scale Two scales Three scales (ours)
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User Study

Graph reports the results of the user study we conducted

In order to further assess the visual quality of our results, we conducted a 
user-study that follows the protocol used in Liang[10]. Specifically, it consists 
of eight participants who were asked to rate between 1 to 8 images produced 
by the methods in Liang[10], Paris[7], Rana[12], Gu[8], Farbman[9] as well 
as ours. The images were displayed next to each other (at a random order). 
The participants were naive as to the purpose of the test and were asked to 
score the images based on how realistic and unprocessed thy appear.
The graph shows that our method obtained the highest mean score 6.43 with a 
tolerate std of 1.6. The mean opinion score (in bold) and std of each method 
are shown in the graph. 

6.43,1.60

5.78,2.04

4.39,1.99

2.43,1.95

4.70,1.98

2.14,1.28
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Results by Low Light Enhancement Methods

While Low light methods also manipulate the image brightness, they are not adapted to 
operate on images with very high dynamic range.

Jiang et al. [16]

Guo and Li et al. [15]



Additional Visual Comparisons

from the HDR+ dataset [2]
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Liang [10]

Farbman [9]

Ours

Gu [8]

image name: merged_33TJ_20150612_201525_012
9



Liang [10]

Shibata [5]

Ours

Paris [7]

image name: merged_6FHF_20150331_121129_927
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Liang [10]

Shan [3]

Ours

Gu [8]

image name: merged_33TJ_20150723_154227_435
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Liang [10]

Farbman [9]

Ours

Gu [8]

image name: merged_5a9e_20150403_125941_989
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Additional Visual Comparisons

from the HDR Survey dataset [14]
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Paris [7]
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OursZhang [11]
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OursZhang [11]



Examples Training Images
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Examples of LDR images from the DIV2K dataset [1]
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Images from the tone-mapping pipeline

LDR images

Tone mapping network input (Yc)

Network output (N(Yc))
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LDR images

Tone mapping network input (Yc)

Network output (N(Yc))

29

Images from the tone-mapping pipeline



LDR images

Tone mapping network input (Yc)

Network output (N(Yc))
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Images from the tone-mapping pipeline



Network’s action: Yc (shown in color) and the network’s output on it are shown.
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Over contrast due to the adversarial loss in the coarsest scale, which encourage 
higher contrasts

By omitting this term we can reduce this exaggerated appearance  

Fail Cases
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