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1. Further Training Details

Sampling strategy. For all video datasets, we first sam-
ple 128 consecutive frames. From these 128 frames, we
start from a random position and sample a 16-frame clip at
a equal interval of 8 frames, that we take as a video training
instance.

Hybrid training of image and video. In the sec-
ond training stage, we use both video datasets and image
datasets for training. Specifically, for every iteration, we
first feed the model with video training instance without
updating the model weights, and then feed the model with
image training instance of the same batch size. We use the
accumulated gradients of these two forward propagation to
update the model weights.

CNN backbone. All the input images of CNN backbone
are resized to size 224 x 224. Following ViT [3], we make
three modifications to ResNet-50 [4]: 1. Replace Batch
Normalization with Group Batch Normalization [15]. 2.
Remove the fourth stage and increase the number of blocks
in the third stage to 9. As a result, the number of blocks per
stage changes from [3, 4, 6, 3] to [3, 4, 9]. 3. Remove the
global pooling layer.

STE. Following ViT [3], the resolution of the output fea-
ture of CNN backbone is 14 x 14, which are then flattened
to a sequence of length 196 to fed into STE. The feature di-
mension of STE is 768. Moreover, 6 STE Parallel Blocks
are stacked, and each block has 12 heads.

KTD. Following SPIN [10], we map the dimension of
output feature of STE from 768 to 1024 (hidden dim) using
a fully connected layer Wiq € R1024%768

Loss weights. We split Lgyspr, mentioned in Section
3.2 into two parts: Lgpape and L. Then the training loss
is formulated as following:

L= LBD + Lap + Lshape + Lpose + LNOR]VI (D
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where each term is calculated as:
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We use different weight coefficients for each term in the
loss. The coefficients of L3p, Lop, Lshape, Lpose and
Lyogrn are 600.0, 300.0, 0.06, 60.0 and 1.0 respectively.

2. Ablation Study of Datasets

The datasets used in our methods differ from other
methods, such as SPIN [10], MEVA [12] and VIBE [9],
whose settings are described in Table 1. In this sec-
tion, we use the exactly same datasets as each of them
and report the performances on 3DPW [14] in Table 2.
MAEDpin/MAED 1peva/MAEDyjpe represents MAED with
the same datasets as SPIN/MEVA/VIBE. It is worth noting
that VIBE and MEVA adopt the pretrained CNN from SPIN
[10] and HMR [7] respectively. In order to achieve fair com-
parison, we also use the same datasets as SPIN and HMR
to pretrain MAED in the first training stage. We can see
that our method still outperforms them even with the same
datasets, which demonstrates the robustness of our method.

3. Influence of Layer Number of STE

Figure 1 summarizes the results of MEAD with different
layer numbers of STE. We can observe that STE stably ob-
tains higher performance gains from more stacked layers.
However, when the layer number of the model exceeds 6,
the performance improvements brought by increased layer
number will be minor. Considering the trade-off between
speed and accuracy, we empirically choose 6 layers.



Method InstaVariety [8] PoseTrack [I] PennAction [16] 3DPW [14] MPI-INF-3DHP [13] Human3.6M [5] COCO [I1] LSP-Extended [6] MPII[2]
HMR [7] v v v v v
SPIN [10] v v v v v
MEVA [12] v v v v
VIBE [9] v v v v v v
MAED v v v v v v v v v
Table 1: Dataset settings of different methods.
Method PA-MPJPE  MPJPE late the rest to reduce the computation overhead for a single
HMR [7] 81.3 130.0 forward propagation. Specifically, for a 16-frame input se-
SPIN [10] 59.2 96.9 quence, we sample 8 frames at equal intervals as input, and
MEVA [12] 54.7 86.9 obtain the estimation of the remaining 8 frames through in-
VIBE [9] 51.9 82.9 terpolation. This reduces the GFLOPS of a single forward
MAEDgpin 51.9 90.7 by half without significantly reducing accuracy, as is shown
MAED,;eva 46.1 71.5 in Table 3.
MAEDyp. 46.8 80.2
MAED 45.7 79.1 Method PA-MPJPE GFLOPS input
VIBE [9] 51.9 67.6 16f
Table 2: MAED with different dataset settings. MAED| piock 50.0 91.1 16f
MAEDg pi0ck 48.2 100.4 8f
MAEDg_piock 45.7 201.1 16f

Number of Layers

Figure 1: Analytical experiment results with different layer
numbers.

4. Computation Overhead

MAED significantly improves the accuracy of 3D pose
estimation but also incurs non-negligible computation over-
head. Compared to VIBE [9], our method achieves an im-
provement in PA-MPJPE even with only 1 STE block (from
51.9 to 50.0). However, with 1 STE block, MAED con-
tains 91.1 GFLOPS, which is a non-negligible overhead
compared to VIBE’s 67.6 GFLOPS. Furthermore, despite
yielding stable improvement with increasing STE blocks,
each STE block brings about extra 22 GFLOPS, resulting
in 201.1 GFLOPS in total for the 6-block MAED, which is
almost 3x that of VIBE. Therefore, we propose to feed only
part of a input video sequence into the model and interpo-

Table 3: Computation overhead comparison with VIBE [9].

5. More Visualization Comparison

We compare our results with VIBE’s [9] under some
challenging scenario, as is shown in Figure 2.
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(a) In this challenging outdoor scenario, VIBE outputs suboptimal prediction in the first four frames, where a chair
and a table in the foreground obscure most of the human body. The mesh largely shifts from the human body. While
the results of MAED are cosistently accurate.

Input

VIBE

(a) Occluded by a passerby in this crowded scence, an unexpected jitter appears in the fourth frame of the prediction

of VIBE. In comparison, our method utilizes the rich temporal information to infer current prediction, and hence

outputs coherent meshs.

Figure 2: Visualization Comparison with VIBE [9].
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