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1. Overview
In this supplemental material, additional experimental details, analysis and results are provided, including:

• more details about network architectures(Section 2);

• more qualitative comparisons on different datasets (Section 3);

• more analysis on proposed method (Section 4).

2. Network Architecture
2.1. Transformer

We plot the details of transformer layer in Figure. 1.

Figure 1: Details of transformer layer. MSA: Multi-head self-attention.

The detailed configurations of different transformer models are shown in Table. 1. During training, we try to use Automatic
Mixed Precision (AMP) to speed up the training period, but find AMP would easily lead to NAN parameters. Thus we disable
AMP in all experiments.

Experiment h d N L Parameter #
FFHQ [5] 8 512 30 48x48 97M
PLACES2 [12] 8 512 35 32x32 112M
IMAGENET[9] 8 1024 35 32x32 443M

Table 1: Transformer parameter setting across different experiments. h: Head number of bi-directional attention. d: The
dimension of embedding space. N : Number of transformer layer. L: The length of appearance prior.

*Corresponding author.



Module Layer Kernel size / stride Output size

Encoder E
Conv 7× 7/1 256× 256× 64
Conv 4× 4/2 128× 128× 128
Conv 4× 4/2 64× 64× 256

Decoder D
Deconv 4× 4/2 128× 128× 128
Deconv 4× 4/2 256× 256× 64
Conv 7× 7/1 256× 256× 3

ResBlock R× 8
Dilated Conv 3× 3/1 64× 64× 256
Dilated Conv 3× 3/1 64× 64× 256

Table 2: Detailed guided upsampling network F structure. In the residual block, we employ the dilated conv with dilation
= 1, which is shown in gray.

Module Layer Kernel size / stride Output size

Discriminator D

Conv 4× 4/2 128× 128× 64
Conv 4× 4/2 64× 64× 128
Conv 4× 4/2 32× 32× 256
Conv 4× 4/1 31× 31× 512
Conv 4× 4/1 30× 30× 1

Table 3: Detailed discriminator D structure.

2.2. Guided Upsampling Network

Table. 2 and Table. 3 show the employed architecture of guided upsampling network F and discriminator D, which are
fixed in all experiments. For each convolution layer of D, we use spectrum normalization (SN) [7] to stabilize the training
procedure.

3. More Results
We show more qualitative comparisons in Figure. 2, Figure. 3 and Figure. 4.



Figure 2: Comparisons on ImageNet.



Figure 3: Comparisons on FFHQ.



Figure 4: Comparisons on Places2.



4. More Analysis
4.1. Visualization of Appearance Prior

To further understand the effectiveness of transformer and the appearance priors, we give some random reconstructed
results in this section. As shown in Figure. 5, although these priors produced by transformer are low-resolution and just
composed with discrete RGB tokens, they could faithfully represent the information of structures and textures of one complete
image, as well as containing abundant diversities.

Figure 5: Reconstructed appearance priors from the transformer.

4.2. From Image Completion to Unconditional Image Generation

In this setting, we try to let the completion transformer perform unconditional image generation task, which means all
pixels of input image are erased. Some random generation examples are shown in Figure. 6. We could observe that part of
generated images like hair region lose some texture details. This phenomenon may be caused by the upsampling network,
since here no useful pixels are regarded as guidance. One potential solution is to add extra full zero masks into the training
procedure. Overall, the generated results are reasonable and diverse.

Figure 6: Examples of unconditional image generation.



4.3. Comparison with IGPT [1]

IGPT [1] has demonstrated great abilities for model pre-training and image generation. However, they could not handle
the image completion with arbitrary masks well. In Table 4 and Figure 7, we compare our method with IGPT model. By
leveraging bi-direction information and the texture enhancement capability of CNN, our method clearly outperforms IGPT
by a large margin.

Method Mask Ratio PSNR↑ SSIM↑ MAE↓ FID↓
IGPT 19.407 0.671 0.0624 103.088
Ours Random 23.775 0.835 0.0358 35.842

Table 4: Quantitative comparison with IGPT on ImageNet.

Figure 7: Qualitative comparison with IGPT on ImageNet.

4.4. Discussion of Limitation

Inference Speed Currently the main limitation of our proposed method is inference speed, which is also the common
issue of auto-regressive method [10] and transformer-based model [8, 1]. We provide the speed statistics in Table. 5. All the
inference experiments are conducted on single RTX 2080Ti GPU. Specifically, the transformer model trained on FFHQ [5]
could generate 6.5 tokens per second. On Places2 [12], the number of processed tokens in each second are increased to 19.9
since the input length becomes shorter. As the largest trained model, on ImageNet it could produce 8.3 tokens per second.
By contrast, in the second guided upsampling stage, the inference only requires 1.3 seconds for each input images, which is
less than the transformer model, meanwhile demonstrating the high efficiency of CNNs.

There are two interesting directions to alleviate this problem: 1) More efficient attention mechanism. Since the employed
attention owns O

(
L2

)
time complexity, we could reduce this computational cost using recent fast attention techniques [3]

to O(L
√
L) [11, 2]; 2) Faster sampling strategy. Unlike the general auto-regressive model, our bi-directional transformer

model is not limited to fixed sampling order. For example, in each iteration, we could update the several grids simultaneously
with high confidence. We will explore these methods in the future.

Experiments FFHQ [5] PLACES2 [12] IMAGENET [9]

Transformer (Token # /sec) 6.5 19.9 8.3
Upsampling (sec /frame) 1.3 1.3 1.3

Table 5: Inference speed of different components.

Upsampling Artifacts We notice that sometimes the upsampled results will have some slight blurriness artifacts, as shown
in the green bounding box of Figure. 8. This may be caused by the GAN training. In the future, we will explore employing
more advanced upsampled network [6], more powerful discriminator and adversarial objective [4] to alleviate this problem.
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Figure 8: Upsampling artifacts. First column: input. Rest: Completion results of our method.
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