
AGKD-BML: Defense Against Adversarial Attack by Attention Guided
Knowledge Distillation and Bi-directional Metric Learning

— Supplementary Materials —

1. Evaluation on Tiny ImageNet

We evaluate our method on a larger dataset, i.e., Tiny
ImageNet, which is a tiny version of ImageNet consisting
of 3-channel color images with size of 64 × 64 belonging
to 200 classes. Each class has 500 training images and 50
validation images. We use the comparison methods include
Undefended Model (UM), adversarial training (AT) [5], ad-
versarial logit pairing (ALP) [4], single directional met-
ric learning (SML) [6], Bilateral [8] and feature scatter-
ing (FS) [11]. To reduce the computational cost, we use
ResNet-50 model as the same as SML. The learning rate γ
is initialized as 0.1, and decays at 30 epoch. We retrain and
evaluate the models of bilateral and feature scatter using the
existing codes.

From Table 1, we can see that all methods show rel-
atively poor performance on Tiny ImageNet. While our
method outperforms others by a small margin, our perfor-
mance can only achieve ∼20%, which is not good enough
for practical usage. It suggests that Tiny ImageNet is a diffi-
cult dataset due to its large class numbers and small sample
size in each class. There is a large room to improve on this
difficult dataset.

2. Additional Results of AGKD-BML Model
Against AutoAttack (AA) [3]

In Table 2, we provide additional results of AGKD-
BML model trained on 10-step attacks against AutoAttack
(AA) [3] which is an ensemble of four diverse attacks. We
compare two Wide ResNet [10] structures, i.e., WRN-28-
10 and WRN-34-10, as well as two different learning rate
decay epochs, i.e., 100 and 150. For our AGKD-BML mod-
els trained with large-number-step attacks, we utilize the
MART loss [9] which explicitly emphasizes misclassified
examples. Following the suggestions in [7, 9] that the best
performance is usually on a few epochs after the first learn-
ing rate decay, we stop our training at 5 epochs after the
first learning rate decay. From Table 2, we can see that with
more layers, i.e. 34 v.s. 28, the model usually performs bet-
ter in terms of the accuracy against AA.

3. Class-irrelevant attention distillation
In our work, we use the class-irrelevant attention to

transfer the regions that the model focuses on, regardless of
which class makes the contribution. By contrast, the class-
relevant attention map shows the attention region related to
a specific class. An adversarial example (AE) fools a neural
network (NN) by adding intentionally designed perturba-
tions, which are further augmented by the NN to make the
values of false class (actual prediction on AE) related atten-
tion map surpass that of original class, and thus make the
NN misclassify the sample. We argue that transferring the
information of class-relevant attention map is problematic:
1) For the original class, transferring the class relevant at-
tention has limited effects since AE hurts much less the
original class attention map than the false class one. More
importantly, it rarely reduces the dominated responses of
the false class related maps which limits the effects of cor-
recting the misclassification.
2) For the false class, transferring the class relevant atten-
tion enforces the false class attention map to focus on the re-
gions where objects of the original class locate, and it does
not modify the attention regions of the original class.

We conducted the experiment to compare the class rele-
vant/irrelevant attention distillation. We trained models by
the class-relevant attention maps generated by Grad-CAM
corresponding to both original and false classes. In addi-
tion to our AGKD, we also trained a model by another class
irrelevant attention map generated by averaging all CAM
maps of all classes [12]. The results in Table 3 demonstrate
better performance achieved by the class-irrelevant atten-
tion distillation. We chose AGKD over CAM-avg since
CAM-avg is computationally heavy.

4. Comparison of Running Time
We provide the training time of bilateral [8], feature scat-

ter [11], AT [5], SML [6] and our AGKD-BML model on
CIFAR-10 dataset. In Table 4, we provide implementation
platforms, training time (seconds) per epoch, number of
epochs for training, total time (hours) for training, as well as
the number of the steps to get the adversarial examples for
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Table 1. Evaluation results on Tiny ImageNet, under seven widely used attacks, as well as the results on clean images. The best accuracy
for each attack is illustrated as bold. All attack budgets in training are ϵ = 8 by default for an apples to apples comparison.

Tiny ImageNet
Attacks(steps) clean FGSM BIM(10) PGD (10) PGD (20) CW (10) CW (20) MIM (40)

UM 64.62% 3.93% 0.17% 0.10% 0.07% 0% 0% 0.57%
Bilateral [8] 58.70% 30.81% 20.98% 19.73% 18.98% 15.19% 14.61% 22.47%

FS [11] 53.81% 30.06% 20.59% 19.46% 18.52% 15.53% 14.68% 22.40%
AT [5] 42.29% 26.08% 20.41% 19.99% 19.59% 17.17% 16.92% 21.15%

ALP [4] 41.53% 21.53% 20.03% 20.18% 19.96% 16.80% - 19.85%
SML [6] 40.89% 22.12% 20.77% 20.89% 20.71% 17.48% - 20.69%

AGKD-BML 53.21% 31.39% 23.55% 22.68% 21.78% 18.8% 18.03% 24.71%

Table 2. Evaluation results of AGKD-BML against AutoAttack
(AA), on CIFAR-10 dataset, with different layers, learning rate
and decay points. All results are evaluated by the models trained
on 10-step attacks.

CIFAR-10
Networks Decay point AA

AGKD-BML-10
WRN-28-10

100 50.80%
150 50.73%

WRN-34-10
100 51.05%
150 51.63%

Table 3. Comparisons of class-relevant and -irrelevant attention.
Class-relevant Class-irrelevant

GC-orig GC-false CAM-avg AGKD
59.06% 58.86% 66.55% 65.93%

each model. All running times are evaluated on one Nvidia
V100 GPU with 32GB memory. Once trained, testing times
for all the models are approximately the same, although it
shows in Table 4 that our model takes more time in training.
In the security applications, the training time is not critical
compared to the accuracy. Therefore, 1.2 days of training
time of AGKD-BML model is acceptable.

Furthermore, we also evaluated the performance of dif-
ferent models with the same running time. FS and Bilateral
originally use only one-step attacks. Therefore, we trained
FS with 2-step attack (470s) and Bilateral with 4-step attack
(453s), and got accuracy of 70.51% and 59.99% (compared
to ours: 71.02%, 528s), respectively.

5. Comparison of One More Latest Model

In [2], the authors proposed a customized adversarial
training (CAT) model, which adaptively tunes a suitable ϵ
for each sample during the adversarial training procedure.
However, the authors do not provide systematical results of
the same experiment settings as that in [6, 8, 11], instead,
they only provide the results under PGD and CW attacks
on CIFAR-10 dataset. Therefore, we report our results of
the same experimental setting as CAT in Table 5. CAT has
two variants, 1) “CAT-CE” applies standard cross entropy

loss as used in traditional adversarial training models [5],
and 2) “CAT-MIX” applies both cross entropy loss and CW
loss [1]. Note that CAT used an adaptive ϵ for training,
while our results are given with a fixed ϵ = 4. From the ta-
ble, we can see that our proposed AGKD-BML model con-
sistently outperformed “CAT-CE”, and “CAT-MIX” except
under “CW” attack. This is because both AGKD-BML and
CAT-CE only apply cross entropy which is used in PGD at-
tack, and “CAT-MIX” includes both cross entropy loss and
CW loss that is used in CW attack.

6. Evaluation of k-Nearest Neighbor (k-NN)
classifier

We conduct the experiments that apply k-Nearest Neigh-
bor (k-NN) method as the classifier following [6]. We uti-
lize the feature vectors from the penultimate layer to per-
form the k-NN classifier for all the models with k = 50.

In Table 6, we show the k-NN classifier accuracy, as well
as corresponding softmax accuracy, between four models,
i.e., AT [5] ALP [4] SML [6] and proposed AGKD-BML,
on CIFAR-10, SVHN and Tiny ImageNet datasets. Our
model consistently achieves higher accuracy on all three
datasets. Moreover, the k-NN classifier usually performs
very similarly as softmax. These quantitative results, cou-
pled with the visualization illustrations in next section (Sec-
tion 7), demonstrate that AGKD-BML is able to obtain bet-
ter representation in the latent feature space than other com-
parison methods, and the accuracy does benefit from the
good representation, rather than the classifier.

7. Visualization Analysis with t-SNE
In Figure 1, 2, 3, 4, we provide the t-SNE plots to show

the sample representations in feature space for all attacked
classes under PGD-20 and PGD-100 attacks. The trian-
gle points with different colors represent the clean images
in different classes, while the red circle points are the ad-
versarial examples under attack. We show the adversarial
examples of airplane, automobile, bird, cat and deer under
PGD-20 and PGD-100 attack in Figure 1 and Figure 3, re-
spectively, and the adversarial examples of dog, frog, horse,



Table 4. Training time comparison.
CIFAR-10

♯ of steps platform seconds / epoch ♯ of epochs total (hours)
Bilateral [8] 1 TensorFlow 211s 200 11.7h

FS [11] 1 PyTorch 342s 200 19.0h
AT [5] 7 PyTorch 502s 200 27.9h

SML [6] 7 TensorFlow 2234s 55 34.1h
AGKD-BML 2 PyTorch 528s 200 29.3h

Table 5. Comparing with customized adversarial training (CAT). Note that “CAT-MIX” applies CW as part of its loss.
CIFAR-10

Models
White-box Black-box

clean PGD CW VGG-16 Wide ResNet
CAT-CE [2] (adaptive ϵ) 93.48% 73.38% 61.88% 86.58% 88.66%

CAT-MIX [2] (adaptive ϵ) 89.61% 73.16% 71.67% - -
AGKD-BML (fixed ϵ = 4) 95.04% 77.45% 69.06% 89.12% 91.98%

ship and truck under PGD-20 and PGD-100 attack in Fig-
ure 2 and Figure 4, respectively.

From these figures, the same observations can be seen
as in the main text, which we would like to emphasize as
following:

• In the first column of all the figures, “UM” is almost
non-robust to the adversarial examples, as it shows that
all the adversarial examples are far away from their
original class, and fit into the distributions of other
classes.

• In the second and third columns of all the figures,
while SML does pull many of the adversarial exam-
ples back to their original class, BML keeps better sep-
arations between different classes, and has much less
amount of adversarial examples located far away com-
pared to SML.

• By integrating both AGKD and BML, AGKD-BML
pulls most of the adversarial examples back to their
original class, while keeps best separation between
classes overall, as shown in the fourth column of all
the figures.
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Table 6. Evaluation and comparison between k-NN and softmax classifiers (k-NN/softmax). Our proposed AGKD-BML with k-NN
classifier consistently outperforms other comparison methods, and shows very similar accuracy with softmax classifier.

Models
CIFAR-10 SVHN Tiny ImageNet

clean PGD (20) clean PGD (20) clean PGD (20)
AT [5] 87.1% / 86.2% 47.5% / 45.6% 91.5% / 91.6% 45.8% / 45.6% 36.6% / 42.3% 20.2% / 19.6%

ALP [4] 89.6% / 89.8% 48.9% / 48.5% 91.4% / 91.3% 52.0% / 52.2% 35.2% / 41.5% 20.3% / 20.0%
SML [6] 86.3% / 86.2% 51.7% / 51.6% 84.3% / 84.0% 52.0% / 51.9% 34.0% / 40.6% 20.7% / 20.7%

AGKD-BML 91.9% / 92.0% 71.1% / 71.0% 95.1% / 95.0% 75.1% / 74.9% 51.8% / 53.2% 21.0% / 22.7%
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Figure 1. t-SNE plots for illustrating the sample representations in feature space. The adversarial example is airplane, automobile, bird, cat
and deer in each row, respectively, under PGD-20 attack.
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Figure 2. t-SNE plots for illustrating the sample representations in feature space. The adversarial example is dog, frog, horse, ship and
truck in each row, respectively, under PGD-20 attack.
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Figure 3. t-SNE plots for illustrating the sample representations in feature space. The adversarial example is airplane, automobile, bird, cat
and deer in each row, respectively, under PGD-100 attack.
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Figure 4. t-SNE plots for illustrating the sample representations in feature space. The adversarial example is dog, frog, horse, ship and
truck in each row, respectively, under PGD-100 attack.
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