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1. Experimental settings
Because of the page limitation, some details are not in-

cluded in the paper. Here we supply them.
Data preprocessing On all three datasets used in the paper,
the images are subject to standard normalizations. Training
images are first randomly resized and cropped to 224× 224
and then randomly flipped with a probability of 0.5. For
the testing images, they are first resized to 256 × 256 and
then center-cropped to 224 × 224. All images are also first
converted to [0.0, 0.1] from [0, 255], and then normalized
by subtracting the mean [0.485, 0.456, 0.406] and dividing
by the standard deviation [0.229, 0.224, 0.225] of each RGB
color channel.
Network training The pre-trained ResNet-18 used is pro-
vided by PyTorch1. For all experiments, the student net-
works are trained 20 epochs by gradient descent with batch
size of |Lt ∪ Ct| and weight decay of 1e − 4. The learning
rate is set to 1e− 4 with 0.9 momentum.
Detailed set-ups for training MTurkers On the evaluation
of student teaching, each experiment was performed with 40
students, on Amazon MTurk. The teaching process had two
phases, teaching and testing. Before teaching, workers were
shown a brief introduction of the teaching set-up, illustrat-
ing how our web-based teaching interface works. During
teaching, they were shown a sequence of 20 images. At
each iteration, they were asked to select a category label
from a list of options (five for butterflies and three for Char-
acters). Once they made a choice, they received feedback.
For correct labels, they were told “Your choice is correct.”
Otherwise, true label and counterfactual explanations were
presented as in Figure 4 of the paper. Upon receiving feed-
back, workers waited for a minimum of 2 seconds before
they could proceed to the next teaching image. After teach-
ing, 20 randomly selected testing set images were assigned
to each learner. These random images were different for
each learner and no feedback was given.

On the evaluation of scalable recognition, the similar
process is conducted but 30 unlabeled images are assigned

1https://pytorch.org/vision/stable/models.html
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(b) Chinese Characters
Figure 1: Test set labeling accuracy of simulated students.

after the teaching phase.

2. Results for simulated student
While the ultimate goal is to teach humans, experiments

with simulated students are important to enable replicable
method comparisons. In these experiments the student is a
network and the goal to select teaching examples that op-
timize training speed. Figure 1 shows the evolution of stu-
dent test set labeling accuracy vs. teaching iteration, for the
various machine teaching algorithms of Figure 2 of the pa-
per. It can be seen that CMaxGrad significantly improves
on MaxGrad [1], the prior state of the art, especially on
Butterflies. This suggests the importance of counterfactual
explanations.

3. Ablation study
To evaluate the effect of counterfactual explanations [2]

on the teaching algorithm and CMaxGrad, we did the ab-
lation study by simply associating the counterfactual expla-
nations to the teaching images selected by RANDOM and
MaxGrad. The results are reported in Table 1 that shows
that adding counterfactual explanations (CE) to MaxGrad
is better than MaxGrad but weaker than CMaxGrad. This
indicators the importance of jointly selecting teaching im-
ages and their explanations because of the correlations.

4. Selected samples
In Figure 2 and 3, we show the selected teaching sets of

MaxGrad and CMaxGrad on two datasets for student teach-
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Figure 2: Comparisons of selected teaching examples with raster scan order on Butterflies.
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Figure 3: Comparisons of selected teaching examples with raster scan order on Chinese Charaters.

Butterflies Chinese Char.
RANDOM 65.2 47.05
RANDOM+CE 74.60(18.58) 71.13(20.90)
MaxGrad+CE 83.00(24.20) 83.75(19.89)
CMaxGrad 84.10(18.24) 84.63(20.18)

Table 1: Test set Labeling accuracy, mean (std).

ing evaluation. Also, in Figure 4 and 5, 5 (3) randomly
selected teaching images and their potential counterfactual

explanations are shown.
Next, in Figure 6 and 7, we show the selected examples

when evaluating the whole framework by using “CMax-
Grad+SimCLR” of Table 2 of the paper on two datasets,
and some randomly selected counterfactual explanations in
Figure 8 and 9.

At this time, we can not give a sufficient intuition about
the teaching set, but we observe that , beyond some “nor-
mal” images that teach students the appearance of the
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Figure 4: Counterfactual explanations on Butterflies of 5 randomly selected teaching samples on Butterflies. The column index indicates
the potential counterfactual classes of the turker.
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Figure 5: Counterfactual explanations on Butterflies of 3 randomly selected teaching samples on Chinese Characters. The column index
indicates the potential counterfactual classes of the turker.

concepts, the algorithm tends to select images with un-
usual poses, low-resolution, occlusion, and even camou-
flage. This is consistent with MaxGrad and CMaxGrad’s
example selection based on large negative margins. These
images force the students to focus attention on features that
are essential for class discrimination, speeding up the learn-
ing process.
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Figure 6: Selected teaching examples with raster scan order on Butterflies.
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Figure 7: Selected teaching examples with raster scan order on Gull.
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Figure 8: Counterfactual explanations on Butterflies of 5 randomly selected teaching samples on Butterflies. The column index indicates
the potential counterfactual classes of the turker.



Ring billedCalifornia Glaucous winged WesternHeermann
Teaching
exampleIndex

1
4

5
1
1

1
5

Figure 9: Counterfactual explanations on Gull of 5 randomly selected teaching samples on Gull. The column index indicates the potential
counterfactual classes of the turker.


