
Appendix

A. Implementation Details
In this section, we introduce in detail the implementations of ACDA. We use PyTorch for all the implementations. In

practice, the per-pixel adaptive convolutions can be efficiently implemented by first reorganizing input features with the
Unfold function in PyTorch to extract sliding local blocks from a batched input tensor. And then perform corresponding
multiplications between sliding local blocks and the adaptive filters (dynamic atoms). All experiments are conducted on the
same machine with 4⇥2080Ti GPUs. The code will be released upon acceptance.

A.1. Visualization of filter decomposition
We provide a visualization of decomposing a convolutional filter K over m = 4 basis elements in Figure A.
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Figure A: Illustration of decomposed convolutional filters with m = 4 dictionary atoms. A convolutional filter K 2
Rc⇥c0⇥l⇥l is decomposed over m filter atoms D 2 Rm⇥l⇥l, linearly combined by coefficients A 2 Rc⇥c0⇥m.

A.2. Visualization of Multi-scale Fourier-Bessel Bases
Fourier-Bessel bases at three scales are visualized in Figure B. In practice, we truncate the first 6 basis elements at

each scale. The small-size bases are padded with 0 to match the spatial size of the largest bases, which allow parallel
multiplications and convolutions.

Figure B: Visualization of the first six Fourier-Bessel basis elements at three scales of l = 3, l = 5, and l = 7.

A.3. Convolutional Atom Generation Networks
To generate the dynamic atoms for per-pixel adaptive convolutional filters, we parametrize the generation network � as a

light weight 2-layer convolutional neural network. The first layer uses 1⇥ 1 convolution to shrink the channel dimension of
the input feature to 64 channels, and a 3 ⇥ 3 convolutional layer is then followed to output the prediction of dynamic atoms
D or basis coefficients ↵, we consistently observe that this configuration delivers good results with very low cost, while
increasing the size of � does not influence the performance significantly.

A.4. Network Structures of Ad-ResNets
Dynamic bottleneck blocks Following ResNet [11], we construct dynamic bottleneck blocks by using 1⇥ 1 convolutional
layers to squeeze the restore the channel dimensions of feature maps, and applying ACDA on the intermediate features with
fewer channels. This configuration fully demonstrates the advantage of ACDA to alleviate the demand for filters with high
channel numbers. Therefore, networks with ACDA usually enjoy more compact model sizes with fewer parameters. We
use ACDA with atom bases, which include three scales of Fourier-Bessel bases. As shown in Appendix Figure B, we use



Table A: Network architectures of Ad-ResNets. ‘Conv, 3⇥3, 64’ denotes standard 3⇥ 3 convolutional layers with 64 output
channels. We use ACDA with Fourier-Bessel atom bases.
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Figure C: We randomly select a layer and visualize the first predicted bases on a single ImageNet image at different spatial
position. The bases are visually diverse.

m0 = 6 and S = 3, i.e., three sets of Fourier-Bessel bases with 6 basis elements in each set. We empirically observe that this
configuration with only 18 atom basis elements is sufficient to deliver satisfying performance while only requires a 18-dim
vector to be predicted at each spatial position by the dynamic atom generation network to reconstruct a dynamic filter atom.
At each layer, we adopt a tiny two-layer CNN as the dynamic atom generation network, whose architecture is detailed in
Appendix Section A.3. In practice, we use 6 dynamic filter atoms, i.e., m = 6, so that the dynamic atom generation network
output a 6⇥ 18 = 108-dim vector at each spatial position.

Ad-ResNet Without heavily tuning the network architectures, we follow ResNets and construct two variants of Ad-ResNet.
The detailed network configurations are presented in Table A. In crowd counting experiments, the first ‘Max pool’ layer
and the final ‘Output’ layer are removed. Consecutive transposed convolution layers with batch normalization and ReLU
activation are used for resolution recovery.

A.5. Adaptivity and Diversity of Generated Atoms

To show that the proposed atom generator predicts atoms adaptively, we calculate the average pairwise cosine distance
of basis coefficients ↵ (averaged across scales) within the spatial position of a single image from ImageNet. On the entire
ImageNet validation set, we obtain 0.68 ± 0.30 intra-image cosine distance of ↵, which jointly with Figure C, show the
diversity of the predicted bases (filters) both quantitatively and qualitatively.

A.6. Ablation Study

We present ablation study on RealSR Final ⇥3 to validate the selection of the number of atoms m and the scales S of
Fourier Bessel bases. All comparisons are in Table B. m > 7 and S > 3 lead to minor performance improvements only. For
better trade-offs between performance and practical costs, we adopt m = 6 and S = 3.



Table B: Ablation study on number of atom m and scales S.

Number of atoms m Number of scales S

m = 3 m=5 m=7 m=9 m=11 m=13 m=15 S=1 S=2 S=3 S=4 S=5

PSNR 30.52 30.68 30.73 30.74 30.75 30.73 30.74 30.63 30.73 30.72 30.70 30.69
SSIM 0.858 0.866 0.868 0.868 0.869 0.866 0.868 0.866 0.868 0.868 0.865 0.866

B. Qualitative Results on Crowd Counting
More qualitative results on crowd counting are presented in Figure D.

C. Qualitative Results on Super-resolution
We present qualitative results for super-resolution experiments on RealSR dataset in Figure E.

D. Qualitative Results of Denoising
We present qualitative results and comparisons in Figure F and Figure G.



Input GT: 308 Prediction: 289

Input GT: 1265 Prediction: 1179

Input GT: 235 Prediction: 262

Input GT: 378 Prediction: 363

Input GT: 314 Prediction: 328

Figure D: Visualizations of the atom basis coefficients heatmaps. It is clearly shown that the adaptive convolutions tend to
adopt large kernel sizes, i.e., with 7 ⇥ 7 atom bases, when the objects in the target regions have larger spatial sizes, i.e., the
closer objects. While 3⇥ 3 bases are preferred when the dynamic convolutions are applied on regions with dense objects.



Low resolution High resolution LP-KPN Ours
PSNR 22.20 PSNR 27.56

Low resolution High resolution LP-KPN Ours
PSNR 28.82 PSNR 29.34

Low resolution High resolution LP-KPN Ours
PSNR 26.24 PSNR 26.89

Figure E: Qualitative comparisons against LP-KPN. Although two methods deliver similar quantitative results, we consis-
tently observe that LP-KPN suffers from strong artifacts. ACDA produce more faithful restoration results. We believe the
adaptive convolutions operated in deep features help better capture image semantics, thus prevent over-sharp results with
strong artifacts.



Figure F: Qualitative results on SIDD.

Noisy Groundtruth DnCNN CBDNet VDNet ACDA + MSE ACDA + VDNet
PSNR 18.18 PSNR 21.13 PSNR 32.64 PSNR 32.13 PSNR 32.76

Noisy Groundtruth DnCNN CBDNet VDNet ACDA + MSE ACDA + VDNet
PSNR 28.41 PSNR 35.18 PSNR 40.82 PSNR 40.22 PSNR 40.99

Figure G: Qualitative comparisons against multiple methods on SIDD.


