Appendix for “Adaptive Focus for Efficient Video Recognition”

A. Introduction of Baselines

AdaFocus is compared with several competitive baselines that focus on facilitating efficient video recognition, including MultiAgent [9], SCSampler [4], LiteEval [11], AdaFrame [10], Listen-to-look [1] and AR-Net [6].

- MultiAgent [9] proposes to learn to select important frames with multi-agent reinforcement learning.
- SCSampler [4] introduces a light-weighted framework to efficiently identify the most salient temporal clips within a long video. We follow the implementation of [6].
- LiteEval [11] combines a coarse LSTM and a fine LSTM to adaptively allocate computation based on the importance of frames.
- Listen-to-look [1] fuses image and audio information to select the key clips within a video. As we do not leverage the audio of videos, for a fair comparison, we adopt its image-based version introduced in their paper.
- AR-Net [6] dynamically identifies the importance of video frames, and processes them with different resolutions accordingly.

B. Implementation Details

B.1. Training Hyper-parameters for Section 4.1

In our implementation, we always train f_G, f_L and f_C using a SGD optimizer with cosine learning rate annealing and a Nesterov momentum of 0.9. The size of the mini-batch is set to 64, while the L2 regularization coefficient is set to 1e-4. We initialize f_G and f_L by fine-tuning the ImageNet pre-trained MobileNet-V2 [7] and ResNet-50 [2] using full inputs for 15 epochs with an initial learning rate of 0.01. In stage I, we train f_L and f_C using randomly sampled patches for 50 epochs with an initial learning rate of 5e-4 and 0.05, respectively. Here we do not train f_G as we find this does not significantly improve the performance, but increases the training time. In stage II, we train π/π' with an Adam optimizer [3] for 50/10 epochs. The same training hyper-parameters as [8] are adopted. In stage III, we only fine-tune f_C with the learned policy for 10 epochs, since we find further fine-tuning f_L leads to trivial improvements but prolongs the training time. The initial learning rates are set to 5e-4 and 5e-3 for Mini-Kinetics and ActivityNet/FCVID, respectively.

B.2. Training Hyper-parameters for Section 4.2

Here we initialize f_G and f_L by training them using the same configuration as [5]. The training procedure of AdaFocus is the same as Section 4.1 except for the following changes. In stage I, we use the initial learning rate of 1e-5 and 0.01 for f_L and f_C, respectively, and train them for 10 epochs. In stage III, we use an initial learning rate of 5e-4 for f_C. Note that TSM+ follows exactly the same training procedure as our method. The only difference is that TSM+ does not train the policy network π, since it adopts full frames as inputs.

References

