
Appendix for “Adaptive Focus for Efficient Video Recognition”

A. Introduction of Baselines
AdaFocus is compared with several competitive base-

lines that focus on facilitating efficient video recognition,
including MultiAgent [9], SCSampler [4], LiteEval [11],
AdaFrame [10], Listen-to-look [1] and AR-Net [6].

• MultiAgent [9] proposes to learn to select important
frames with multi-agent reinforcement learning.

• SCSampler [4] introduces a light-weighted framework
to efficiently identify the most salient temporal clips
within a long video. We follow the implementation of
[6].

• LiteEval [11] combines a coarse LSTM and a fine
LSTM to adaptively allocate computation based on the
importance of frames.

• AdaFrame [10] learns to dynamically select informa-
tive frames with reinforcement learning and performs
adaptive inference.

• Listen-to-look [1] fuses image and audio information
to select the key clips within a video. As we do not
leverage the audio of videos, for a fair comparison, we
adopt its image-based version introduced in their pa-
per.

• AR-Net [6] dynamically identifies the importance of
video frames, and processes them with different reso-
lutions accordingly.

B. Implementation Details
B.1. Training Hyper-parameters for Section 4.1

In our implementation, we always train fG, fL and fC
using a SGD optimizer with cosine learning rate annealing
and a Nesterov momentum of 0.9. The size of the mini-
batch is set to 64, while the L2 regularization coefficient is
set to 1e-4. We initialize fG and fL by fine-tuning the Im-
ageNet pre-trained MobileNet-V2 [7] and ResNet-50 [2]1

using full inputs for 15 epochs with an initial learning rate
of 0.01. In stage I, we train fL and fC using randomly sam-
pled patches for 50 epochs with an initial learning rate of

1We use the official models provided by PyTorch.

5e-4 and 0.05, respectively. Here we do not train fG as we
find this does not significantly improve the performance, but
increases the training time. In stage II, we train π/π′ with
an Adam optimizer [3] for 50/10 epochs. The same training
hyper-parameters as [8] are adopted. In stage III, we only
fine-tune fC with the learned policy for 10 epochs, since we
find further fine-tuning fL leads to trivial improvements but
prolongs the training time. The initial learning rates are set
to 5e-4 and 5e-3 for Mini-Kinetics and ActivityNet/FCVID,
respectively.

B.2. Training Hyper-parameters for Section 4.2

Here we initialize fG and fL by training them using
the same configuration as [5]. The training procedure of
AdaFocus is the same as Section 4.1 except for the follow-
ing changes. In stage I, we use the initial learning rate of
1e-5 and 0.01 for fL and fC, respectively, and train them for
10 epochs. In stage III, we use an initial learning rate of 5e-
4 for fC. Note that TSM+ follows exactly the same train-
ing procedure as our method. The only difference is that
TSM+ does not train the policy network π, since it adopts
full frames as inputs.
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