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1. Additional Results
1.1. Metric Analysis of HDR Performance:

In this section, we provide a detailed metric analysis of HDR performance over state-of-the-art event-based video recon-
struction method ECNN [9], E2VID [6] and CF [7]. To demonstrate the performance of reconstructing raw scene radiance,
we believe that the Mean Square Error (MSE) of raw intensity is the most relevant metric. We also evaluate the structural
similarity of the reconstructed images using the Structural Similarity Index Measure (SSIM) [10] and Q-score [3] to provide
a complete picture of the algorithm performance.

Existing hybrid event/frame datasets are not targeted at High Dynamic Range (HDR) scenarios and do not provide HDR
reference images for evaluation. We have collected a new dataset, the HDR dataset documented in §4.1, that provides high
quality event/frame sequences with HDR reference. On this dataset, we provide a comparison of our algorithm with the
compared method ECNN [9], E2VID [6] and CF [7]. Fig. 1 shows a boxplot of the metrics MSE, SSIM and Q-score
evaluated on the full HDR dataset (§4.1) using the reference HDR image as the ground truth. This provides a clear indication
of the relative performance gains of our algorithm, both in improved average metric performance and reduced variance of
the results.
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Figure 1. Boxplots of raw intensity Mean Square Error (MSE), Structural Similarity Index Measure (SSIM) [10] and the HDR Q-score
measure [3], for ECNN [9], E2VID [6], CF [7] and our algorithm AKF. Results are evaluated over the full HDR datasets documented in
§4.1.

The detailed results of the evaluation on the HDR dataset (§4.1) are summarised in Table 1 below. This table expands on
the summary results for the HDR dataset provided in Table 1 (main paper). In the main paper, we also present quantitative
results on the Artificial HDR dataset (§4.2) that we collected. The expanded results for this experiment are also shown
in Table 1. The quantitative results clearly demonstrate the superior performance of our algorithm versus the compared
algorithms ECNN [9], E2VID [6] and CF [7].

In addition to our HDR/AHDR dataset, we also quantitatively evaluated on the DAVIS IJRR dataset (§4.3 #1). Though
it is not targeted at HDR data, it is still possible to evaluate the ability of an algorithm to reconstruct an unknown ground
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Metrics MSE (×10−2) ↓ SSIM ↑ Q score ↑
Methods E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours)

Dataset HDR sequences

City 2.02 1.60 3.40 0.33 0.61 0.47 0.44 0.87 3.99 2.42 3.74 5.40
Trees 1 2.45 5.73 8.07 1.79 0.73 0.53 0.53 0.82 4.54 4.26 2.85 5.44
Trees 2 9.96 16.28 5.83 0.85 0.54 0.11 0.83 0.97 4.50 3.32 3.88 5.18
Trees 3 22.48 26.84 8.38 4.79 0.41 0.15 0.78 0.86 4.52 3.19 3.03 4.77
Building 1.91 6.71 5.41 0.81 0.79 0.30 0.74 0.94 4.05 3.86 1.54 3.36

Mean 7.76 11.43 6.22 1.71 0.616 0.31 0.66 0.89 4.32 3.41 3.01 4.83

Dataset Artificial HDR sequences (AHDR)

Mountain slow 17.19 33.03 7.43 6.49 0.53 −0.14 0.57 0.71 5.36 2.83 5.19 5.87
Mountain fast 17.75 36.69 7.87 6.47 0.56 −0.23 0.52 0.70 5.34 2.76 4.47 5.19
Lake slow 4.83 7.99 2.72 1.81 0.48 0.22 0.70 0.80 5.18 3.82 5.01 5.76
Lake fast 6.47 7.21 3.11 1.93 0.43 0.30 0.70 0.80 5.07 4.01 4.45 5.35

Mean 11.56 21.23 5.28 4.18 0.50 0.04 0.62 0.75 5.24 3.36 4.78 5.54

Table 1: Comparison of state-of-the-art event-based video reconstruction methods E2VID [6], ECNN [9] and CF [7] on our
HDR (§4.1) and AHDR dataset (§4.2). Our AKF outperforms the compared methods in most scenarios.

Metrics MSE (×10−2) ↓ SSIM [10] ↑ LPIPS [12] ↓
Methods E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours) E2VID ECNN CF AKF (ours)

boxes 6dof 11.87 3.99 0.33 0.26 0.51 0.62 0.78 0.80 0.34 0.24 0.26 0.26
calibration 23.46 3.05 0.11 0.09 0.43 0.65 0.92 0.92 0.31 0.18 0.09 0.07
dynamic 6dof 30.96 14.11 0.13 0.12 0.24 0.30 0.88 0.87 0.46 0.36 0.18 0.20
office zizang 17.14 3.95 0.26 0.22 0.40 0.49 0.85 0.86 0.40 0.25 0.22 0.22
poster 6dof 21.68 6.86 0.29 0.26 0.34 0.46 0.78 0.79 0.35 0.22 0.22 0.24
shapes 6dof 19.44 8.77 0.16 0.11 0.68 0.76 0.92 0.94 0.31 0.18 0.16 0.15
slider depth 20.13 4.16 0.21 0.18 0.44 0.61 0.83 0.86 0.40 0.23 0.22 0.21

Mean 20.67 6.41 0.21 0.18 0.43 0.56 0.85 0.86 0.37 0.24 0.19 0.19

Table 2: Comparison of state-of-the art methods of event-based video reconstruction on IJRR [2] DAVIS datasets (§4.3
#1). Though both CF [7] and AKF perform well in the structural similarity metrics SSIM [10] and LPIPS [12], our AKF
outperforms other methods with a significant margin in the absolute intensity metrics MSE.

truth image by sub-sampling the frame data. To quantitatively evaluate on DAVIS datasets, we use every second image
frame as input for the algorithm and then take the intermediate image frame as ground truth for evaluation of the quality of
reconstruction using the quantitative metrics. The full event stream is used in the algorithm.

We have used the same sequences and frames as used in [9] and [6] for the evaluation study. In addition to the MSE
and SSIM, we also evaluated on the learned perceptual image patch similarity (LPIPS) [12]. Table 2 shows that for MSE
and SSIM, the AKF is almost always the best, though CF [7] is roughly equal on LPIPS. We believe the reduced gap in
performance between CF [7] and AKF is due to ‘cleaner’ frame data that is not under/overexposed as in our HDR dataset
(§4.1). The large difference in MSE between AKF and E2VID [6]/ECNN [9] is not as apparent in SSIM and LPIPS, agreeing
with the intuition that pure event reconstruction methods are relatively more faithful to scene structure than the absolute
intensity.

1.2. Visual Analysis of HDR Performance:

It is extremely difficult to measure HDR performance from reproduced images visually, especially after tonemapping or
normalisation for print reproduction. In the main paper, we have chosen a set of public DAVIS event camera datasets that
highlight specific issues in the HDR reconstruction. Boxes 6dof and Outdoors running in Dataset #1, Night drive
in Dataset #2 and Shadow in Dataset #3 of §4.3 include a range of challenging scenarios such as night/bright outdoor lighting
conditions, driving, running, fast/slow motions, static/moving background, dynamic/static objects.

In Fig. 2, we demonstrate more examples on sequence Night drive in ACD dataset (§4.3 Dataset #2) and Boxes 6dof
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DAVIS frame E2VID [6] CF [7] AKF(ours)

Figure 2. Comparison of state-of-the-art event-based video reconstruction methods on sequences with challenging lighting conditions and
fast motions, drawn from the open-source datasets ACD [7] and IJRR [2]. We demonstrate the different time instances of the same dataset
in the main paper. E2VID [6] fails to recover trees on the right-hand side in Night drive and details on the carpet in Boxes 6dof.
The method provides washed-out reconstructions that fail to capture the true image intensity. CF [7] leads to dark shadows trailing behind
the moving objects (e.g. trees and roadside poles in Night drive). AKF provides sharp, clean and high dynamic reconstructions under
the challenging scenarios. Video comparisons are provided in the supplementary video materials.

in IJRR dataset (§4.3 Dataset #1) at different time instances of the same dataset in the main paper. In Fig. 2(a) and (b), the
DAVIS frames only capture blurry roadside poles and a small part of the background trees. E2VID [6] produces washed-out
reconstructions of the near trees and the roadside poles. The background trees on the right-hand side can not be captured
properly. By fusing DAVIS frames, CF [7] captures more detailed background trees and provides more accurate intensities.
However, the reconstructions of CF [7] include ‘hot pixels’ (constantly fired pixels) and noisy shadows trailing behind the
fast-moving objects. Our AKF overcomes the limitations of CF [7] by dynamically adjusting the Kalman gain based on
the event and frame uncertainty. For CF [7], the trade-off between fusing image frames and event stream data is fixed by a
chosen constant gain in the filter. In comparison, our AKF encodes the uncertainty in underexposed and overexposed image
pixels and allows the reconstruction to exploit the full information in the event stream where the image frame information is
negligible, while still exploiting the image frame information where it is useful, e.g., the visible trees, the roadside poles, and
the road markings. For CF [7], the ‘hot pixels’ affect the reconstruction performance, but for AKF, the ‘hot pixels’ have high
isolated pixel uncertainty because they are spatially and temporally isolated from other events. Therefore, AKF relies more
on frame data/state on these pixels so that is not affected by the ‘hot pixels’ in Night drive sequence.

In Fig. 2(c) and (d), the fast camera motion causes blurry DAVIS frames and the lack of textures on boxes and the carpet.
The batch method E2VID [6] accumulates events within a certain time period before generating a frame reconstruction from
the event batch. The reconstruction quality is highly dependent on the quantity and quality of the corresponding event data.



(a). LDR frame (b). Frame Augmentation (c). Full AKF Pipeline
Figure 3. An example of image reconstruction using our frame augmentation based on EDI [5] and our full AKF pipeline. The de-blurring
method EDI [5] computes the grid in the overexposed region using events that happens in the frame exposure time but fails to recover the
intensity from white (overexposed) to grey. Our AKF recovers the intensity difference on the grid successfully using the state ‘memory’
that associates with the previous frame/event data.
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(a). CF [7] (b). CF [7] + preprocessing (c). AKF + preprocessing
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(d). CF [7] (e). CF [7] + preprocessing (f). AKF + preprocessing
Figure 4. An example of applying our frame augmentation preprocessing algorithm on CF [7]. Adding the preprocessing step helps to
reduce the ‘double edges’ in the Shapes 6dof with fast camera motion. However, it fails to recover the HDR region (e.g. the white
trialling shadows in Tree rotation).

When the camera motion is high under a highly textured scene, pixels will not be triggered fast enough due to the refactory
period [11], so the event quality is degraded. This leads to the poor reconstruction for E2VID [6], while our AKF models this
type of noise (main paper §3.1.1) and managed to produce better image reconstruction. The E2VID [6] algorithm also fails to
reconstruct the correct intensity information from DAVIS frames as expected when the scene brightness to be reconstructed
varies significantly from the training data. CF [7] fuses the image frame data and consequently remains faithful to the true
intensity values in the image. However, the simple zero-order hold assumption (fusing event data with the previous frame
data) cannot account for fast camera motion. This leads to obvious ‘double edges’ where image frame data from previous
frames is not fully compensated in the reconstruction. In comparison, our AKF provides sharp and clean reconstruction
in the challenging scenarios with high dynamic range and fast motions. Please refer to our supplementary video for more
comparisons.



2. Frame Augmentation versus AKF
The proposed algorithm benefits from two key contributions outlined in the main paper, the frame augmentation process

and the asynchronous Kalman filter. The frame augmentation is based directly on the established performance of the EDI
scheme [5] and also provides a more sophisticated temporal interpolation.

To analyse the effect of AKF above and beyond the frame augmentation step, we run an experiment with frame augmen-
tation and the full AKF pipeline in Fig. 3. In our frame augmentation step, EDI [5] generates sharp images by associating
frames to the event data during the exposure time. Since EDI [5] is not designed for HDR task [4] and the exposure time
of each frame is small, only pixels with events that occurred during the short time can be recovered properly (around the
grid edges) in Fig. 3. As a de-blurring method, it recovers some of the HDR regions surprisingly well although the overall
reconstruction is clearly still overexposed. The AKF recovers the correct intensities for the overexposed region by exploiting
the inherent ‘memory’ in the state of the Kalman filter.

We also compare the CF [7] with and without the frame augmentation in Fig. 4(a)-(b) and (d)-(e). It demonstrates that
our AKF outperforms the simple modelled filter algorithm CF [7] even with frame augmentation. The fast camera motion
of the dataset Shapes 6dof leads to the large difference between two consecutive input frames. Without temporal frame
interpolation between two frames, CF [7] uses the outdated frame data (in a zero-order hold assumption) that leads to the
‘double edges’ in Fig. 4(a). The addition of preprocessing provides CF [7] with more accurate reference images which get rid
of most of the ‘double edges’ in Fig. 4(b). The performance of CF [7] with the preprocessing step is similar to our full AKF
pipeline when the DAVIS frames are reliable (with no over or underexposed region). However, in HDR scenario, adding
the preprocessing step still cannot provide an accurate HDR reference image to CF [7]. The ‘shadowing effect’ (e.g. white
trialling shadows behind trees) is still obvious in Fig. 4(d)-(e). Our AKF produces a significantly better result by dynamically
adjusting gain corresponding to our noise model in Fig. 4(f). This is particularly clear in the tree in the bottom right of the
image.

3. Algorithm

Algorithm 1 Event-based Continuous-time Intensity Estimation Using Asynchronous Kalman Filter
1: Initialise variables
2: for New ith event at pixel p, e(tip) do
3: if new image frame arrives then
4: Deblur new image based on [5]
5: Compute c(τk) based on Eq (10)
6: end if
7: Update augmented frame L̂A

p (t
i
p) based on Eq (8)- (11)

8: Update image covariance Rp(t
i
p) based on Eq (4)- (7)

9: Update state L̂p(t
i
p) based on Eq (14)-(16)

10: Update covariance Pp(t
i
p) based on Eq (18)-(19), where Q is designed based on discussions in §3.1

11: if publishing new image then
12: for all pixels q do
13: Update state L̂q(t

i
q) based on Eq (16)

14: Update covariance Pq(t
i
q) based on Eq (18)-(19), where Q corresponds to zero event covariance

15: Write image
16: end for
17: end if
18: end for

The pseudocode of our proposed algorithm is shown above (Algorithm 1). The time complexity of asynchronous filtering
methods, AKF and CF [7], are both event-wise operations, where they perform a linear combination of several O(1) oper-
ations, resulting in an overall O(1) complexity per event. Besides, for each image, the heaviest time complexity of frame
augmentation is contrast threshold calibration, which has the complexity of O(N +M), where N is the number of events
between two images, and each image contains M pixels.



4. Dataset List
In this section, we list all datasets we used in the paper and supplementary material. The datasets developed in this paper

are the HDR (§4.1) and AHDR (§4.2) dataset with HDR references.

4.1. Our HDR Dataset

Though DAVIS event cameras allow easy access to dual event/frame data, they are subject to significant shutter noise
due to electrical coupling in the pixel circuits [1]. The hybrid event/frame configuration of DAVIS also limits the resolution
of both sensors. The current state-of-the-art hybrid event camera is DAVIS346 with a limited 0.1 Megapixels resolution
of both event and frames. However, both pure event camera and frame-based camera are developing much faster than the
hybrid event camera. For example, the pure event camera Samsung Gen4 has achieved a resolution of 1280 × 960 (around
1 Megapixel) and the conventional RGB camera can easily acquire higher video resolution. The sensor noise and low image
resolution impact the utility of DAVIS camera data for HDR reconstruction and further motivates our approach and the new
dataset we provide in the paper. Our stereo configuration also models the scenario where a pure event sensor camera is added
to a suite of separate vision sensors such as the most likely use case for modern mobile phones and robotic systems.

Figure 5. Our Hybrid event/frame System

The stereo hybrid event/frame camera prototype we built is shown in Fig. 5. We use the camera system to collect events,
frames and HDR reference images. The dataset sequences focus on different HDR scenes with different camera motion
speeds, which is challenging for all event-based HDR image reconstruction methods. The reference HDR image is generated
from several low dynamic range raw images taken by the RGB camera at different exposures. The images are fused using a
traditional multi-exposure image fusion method followed by an image warp to register the reference image with each frame.
The details of our proposed HDR event/frame dataset are summarised below.

HDR Dataset # of images Speed Description HDR Scene Reference Image

Dataset HDR sequences

city 150 medium rooftop overlooking city buildings dark buildings X

trees 1 208 slow and fast a car under tree shadow tree shadow X

trees 2 150 medium parking lot, buildings and clouds bright far-away buildings X

trees 3 150 medium trees partially covered by shadow and far away buildings buildings and shadow X

building 150 medium mountain, tower, building and plants dark plants X

(a). city (b). tree 1 (c). tree 2 (d). tree 3 (e). building



4.2. Our AHDR Dataset

Figure 6. Process of generating our AHDR dataset. We simulate a low dynamic range camera by applying an artificial camera response
function to real images.

For our AHDR dataset, we apply an artificial camera response function to RGB camera output frames to simulate a low
dynamic range camera (see Fig. 6). Following the process introduced in the main paper §3.2.1, we experimentally determine
the corresponding camera uncertainty function of the low dynamic range camera, where the resulting image noise covariance
is high for the ‘cropped’ intensity values. Details about the AHDR dataset are as follows.

HDR Dataset # of images Speed Description HDR Scene Reference Image

Dataset Artificial HDR sequences (AHDR)

mountain × 2 150 slow and fast mountain with road overlooking city dark grass and road X

lake × 2 200 slow and fast side of lake with trees and road during cloudy day trees and clouds X

(a). mountain (b). lake

4.3. Existing DAVIS Dataset

For completeness, we also selected a number of challenging sequences (with HDR scene, fast motion or dynamic objects)
from the existing open-source datasets [2, 7, 8] for evaluation, with details as follows.



HDR Dataset # of images Speed Description HDR Scene Reference Image

Dataset #1 IJRR dataset [2]

boxes 6dof 1298 increasing speed highly textured environment boxes and carpet 7

outdoors running 1573 running speed sunny urban environment buildings 7

calibration 1422 slow checkerboard (6x7, 70mm) - 7

dynamic 6dof 1267 increasing speed office with moving person - 7

office zizang 248 slow office environment - 7

poster 6dof 1358 increasing speed wallposter - 7

shapes 6dof 1356 increasing speed simple shapes on a wall - 7

slider depth 87 constant speed objects at different depths - 7

Dataset #2 ACD dataset [7]

night drive 1058 high speed low-light driving roadside signs, poles and trees 7

Dataset #3 CED dataset [8]

shadow 576 slow static background, moving board board 7

5. Derivation of Pp(t)

Within a time-interval t ∈ [tip, t
i+1
p ), the ODE of Pp(t) is

1

P 2
p(t)

dPp(t)

dt
= −R−1

p (t).

Moving dt to the right hand side yields

1

P 2
p(t)

dPp(t) = −R−1
p (t)dt.

Integrate from event time tip to time t ∫ t

tip

1

P 2
p(t)

dPp(t) =

∫ t

tip

−R−1
p (t)dγ,

− P−1
p (t) = −R−1

p (t) · (t− tip) + C1,

Pp(t) =
1

R−1
p (t) · (t− tip)− C1

,

where C1 is a constant number.

Let t = tip and we have

P (tip) =
1

−C1
,

C1 = −P−1
p (tip).

The solution of the ODE of Pp(t) is

Pp(t) =
1

P−1
p (tip) +R−1

p (t) · (t− tip)
.



6. Derivation of L̂p(t)

Within a time-interval t ∈ [tip, t
i+1
p ), the ODE of L̂p(t) is

˙̂
Lp(t) = −

R−1
p (t) · [L̂p(t)− LA

p (t)]

P−1
p (tip) +R−1

p (t) · (t− tip)
,

d[L̂p(t)− LA
p (t)]

L̂p(t)− LA
p (t)

= −
R−1

p (t)

P−1
p (tip) +R−1

p (t) · (t− tip)
dt.

Integrate from the event time tip to time t

ln
(
L̂p(t)− LA

p (t)
)

=

∫ t

tip

−
R−1

p (t)

P−1
p (tip) +R−1

p (t) · (γ − tip)
dγ

= − ln
(
P−1
p (tip) +R−1

p (t) · (t− tip)
)
+ C2,

where C2 is a constant number. Take exponential of both sides

L̂p(t)− LA
p (t) =

1

P−1
p (tip) +R−1

p (t) · (t− tip)
· eC2 ,

and we define C3 = eC2 .

Let t = tip and we have

L̂p(t
i
p)− LA

p (t
i
p) =

1

P−1
p (tip)

· C3,

C3 = [L̂p(t
i
p)− LA

p (t
i
p)] · P−1

p (tip).

The solution of the ODE of L̂p(t) is

L̂p(t) =
[L̂p(t

i
p)− LA

p (t
i
p)] · P−1

p (tip)

P−1
p (tip) +R−1

p (t) · (t− tip)
+ LA

p (t).
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[6] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. High speed and high dynamic range video with an event

camera. IEEE Trans. Pattern Anal. Mach. Intell., 2020. 1, 2, 3, 4
[7] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. Continuous-time intensity estimation using event cameras. In Asian Conf.

Comput. Vis. (ACCV), 2018. 1, 2, 3, 4, 5, 7, 8
[8] Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick Barnes, Robert Mahony, and Davide Scaramuzza. CED: Color event

camera dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.
7, 8



[9] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drummond, Nick Barnes, Lindsay Kleeman, and Robert Mahony.
Reducing the Sim-to-Real gap for event cameras. In Eur. Conf. Comput. Vis. (ECCV), 2020. 1, 2

[10] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment: From error visibility to structural
similarity. IEEE Trans. Image Process., 13(4):600–612, Apr. 2004. 1, 2

[11] Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel
asynchronous delta modulator for event encoding. IEEE Journal of Solid-State Circuits, 50(9):2149–2160, 2015. 4

[12] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as
a perceptual metric. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2018. 2


