
Appendix
This appendix is organized as follows:

• Section A.1 provides further interpretations of our pro-
posed CaaM.

• Section A.2 presents theoretical evidences for the Im-
proper Causal Intervention (Section 3.1), and for the
convergence of Adversarial Training (Section 3.2).

• Section A.3 provides additional implementation de-
tails for Invariant Loss and Adversarial Training
(Section 3.2).

• Section A.4 provides the methods used to generate
OOD datasets (Section 4.1), additional training details
(Section 4.2), the computation of attention accuracy
(Section 4.4), and presents additional experimental re-
sults.

A.1. Interpretations

A.1.1. Invariant Loss is not Intervention?

Given the causal intervention formulation (Eq. (1)), read-
ers may consider that the implementation of backdoor ad-
justment in robust classification can be simply achieved by
optimizing the cross entropy loss in each data split t ∈ T ,
rather than the invariant loss. Please note that this claim is
actually to use the first objective item of the invariant loss
and it acts just like the conventional cross entropy. The rea-
son is, the backdoor adjustment in statistical causality the-
ory is not designed for learning process in computer vision
practice. The sum “

∑
” of backdoor adjustment can not be

implemented by summing up the cross entropy loss directly.
We need the second term in Eq. (5) as a regularization to
effectively implement the “

∑
” by collecting the common

invariant representation across different splits t. Then dur-
ing inference, we just discard the second regularization term
and forward the model to get the intervened prediction.

A.1.2. Mediator in Causal Graph

We have introduced the mediator M in the main paper
and it is a part of the causal effect which need to be retained.
In this paper we manually separate it out to better illus-
trate the improper intervention and explain why it hurts the
causal effects. That is, non-accurate confounder set which
falsely contains M will lead to the over adjustment of the
mediator and hurt the causal representation. Then in Sec-
tion 3.2 and 3.3 of the main paper, we give details of our
proposed CaaM for obtaining better confounder set.

A.2. Theoretical Proofs
A.2.1. Proof of Improper Causal Intervention

We will show the derivation for the backdoor adjustment
formula using the three rules of do-calculus [14], whose de-
tailed proof can be found in [14, 13]. For a causal directed
acyclic graph G, let X,Y, Z and W be arbitrary disjoint
sets of nodes. We use GX to denote the manipulated graph
where all incoming arrows to nodeX are deleted. Similarly
GX represents the graph where outgoing arrows from node
X are deleted. We use lower case x, y, z and w for specific
values taken by each set of nodes: X = x, Y = y, Z = z
and W = w. For any interventional distribution compatible
with G, we have the following three rules:
Rule 1 Insertion/deletion of observations. If (Y ⊥⊥
Z|X,W )GX :

P (y|do(x), z, w) = P (y|do(x), w), (A1)

Rule 2 Action/observation exchange. If (Y ⊥⊥
Z|X,W )GXZ

,

P (y|do(x), do(z), w) = P (y|do(x), z, w), (A2)

Rule 3 Insertion/deletion of actions. If (Y ⊥⊥
Z|X,W )G

XZ(W )
,

P (y|do(x), do(z), w) = P (y|do(x), w), (A3)

where Z(W ) is the set of nodes in Z that are not ancestors
of any W -node in GX .

In our causal graph, the desired interventional distribu-
tion P (Y |do(X)) can be derived by:

P (Y |do(X)) (A4)

=
∑
s

P (Y |do(X), S = s)P (S = s|do(X)) (A5)

=
∑
s

P (Y |do(X), S = s)P (S = s) (A6)

=
∑
s

P (Y |X,S = s)P (S = s), (A7)

where Eq. (A5) follows the law of total probability;
Eq. (A6) uses Rule 3 given S ⊥⊥ X in GX ; Eq. (A7) uses
Rule 2 to change the intervention term to observation as
(Y ⊥⊥ X|S) in GX . S When M and S are disentangled (or
conditional independent), i.e., (S ⊥⊥ M)|X , the backdoor
adjustment formula can be further written as Eq. (2) by

P (Y |do(X)) (A8)

=
∑
s

P (Y |X,S = s)P (S = s), (A9)

=
∑
s

∑
m

P (Y |X,m, s)P (m|X, s)P (s), (A10)

=
∑
s

∑
m

P (Y |X,m, s)P (m|X)P (s), (A11)



where Eq. (A10) follows the law of total probability and
Eq. (A11) is due to the conditional independence between
M and S given X . This proves Eq. (2). However when
M and S are entangled (as the “improper intervention”),
P (m|X, s) 6= P (m|X) and Eq. (A10) 6= Eq. (A11). There-
fore, in the case of entanglement, the optimization objective
becomes Eq. (3).

A.2.2. Proof of Convergence of CaaM

In this section, we will first give the detailed intuition for
the effectiveness of our CaaM adversarial training. Then we
prove the positive feedback between the Maxi-Game and
Mini-Game and the existence of the global optimal point of
our CaaM, which ensures the convergence of our algorithm.
Intuitive Explanation. Consider the whole pipeline of the
robust prediction. First, we need the complementary atten-
tion to disentangle the causal and confounder feature (i.e.,
c and s) from the image representation x given a data par-
tition Ti; then we use the confounder feature s to generate
better partition Ti+1. The key is the mechanism for c and
s to mutual promote each other and there exists a positive
feedback between these 2 steps. With an accumulative con-
founder set, more accurate invariant representation c can be
encoded, which will further bring a clearer picture of con-
founder feature s. Therefore we can then promote the parti-
tion T with the better s.
Positive Feedback. Here we assume that the image rep-
resentation x is made up of the causal feature c and con-
founder feature s: x = c◦s, where ◦ is feature fusion. Here
we use c∗ and s∗ to represent the oracle causal and con-
founder representation what we tend to find. T ∗ and θ∗ are
the corresponding oracle data partition. The initialized bias
model is named as Ω which is trained with the conventional
cross entropy loss. Therefore, we have Ω(x) = x and it can
be regarded as training with the random data partition. With
Eq. (7), we have:

θ0 = max
θ

IL(h,Ω(x), T (θ)). (A12)

θ0 and its counterpoint T0 are the better partition compared
to the random θ, approaching to T ∗ and θ∗. The behind
reason can also be explained with the heterogeneous envi-
ronment theorem [12]:

Theorem A1. Denote imageX and label Y , using the func-
tional representation lemma [6], there exists random vari-
able s such that X = X(c, s) to make Pt(Y |s) arbitrarily
change across data splits t.

Actually c and s are the robust causal and non-robust
context feature. Theorem A1 indicates that a good data split
t should reveal as much as possible spurious (or variant)
feature to help to narrow the invariant feature. That means,
if we can access more accurate bias feature, we can then
achieve the better data split with Maxi-Game. Since the

initial model Ω captures part of bias feature, the optimized
θ0 (T0) is better than random partition.

Then consider Mini-Game using Eq. (6), we can disen-
tangle causal feature c1 and confounder feature s1 under
current T0 with the proposed complementary attention mod-
ule:

c1, s1 = min
A1,A1,f,g

XE(f, x̃,D) + IL(g,A1(x), T0). (A13)

Eq. (A13) directly optimize c and x̃. With our assumption
that x = c ◦ s ≈ x̃, better c and x̃ leads to more accurate
s. Therefore, confounder feature s1 is a better approxima-
tion to s∗ than previous feature x and the fitted bias model
h1(A1(x)) is better than Ω using:

h1 = min
h

XE(h,A1(x),D). (A14)

We next update the new partition θ1 and T1 with Eq. (A12).
Since the bias model is better, the obtained θ1 and T1 will be
closer to T ∗ and θ∗. Moreover, since CaaM does not intro-
duce new image label space (e.g., continual learning [19])
but just update the partition, the previous T will still play
its role partially. This results in an even better intervention
with a comprehensive confounder set. Until now, we have
illustrated a complete positive feedback of our CaaM. Next
we give that the Mini-Game and Maxi-Game can both reach
the global optimal point.
Global Optimal Point. Given the partition T = T ∗ , the
learned c will be the oracle causal representation c∗ when
Eq. (A13) achieves the global minimal point. Then under
the assumption of x = c ◦ s, s is equal to s∗. Therefore, the
corresponding T can not be better. That is, Eq. (A12) also
arrives to the global optimal point.

A.3. Implementation Details
A.3.1. Details of Invariant Loss

While having represented the core function of Invariant
Loss (Eq. (5)) in the main paper, we aim to present more de-
tails regarding its motivation and practical implementation
in this section. Invariant Loss aims to find an invariant rep-
resentation (i.e., the causal feature) robust for prediction,
such that the optimal classifier over the representation is the
same across dataset partition T [2]. This is formally given
by:

Definition A1 (Invariant Representation). A representation
A(x) ∈ Rd is invariant across partition T if there ex-
ists a classifier g : Rd → Rk such that for ∀t ∈ T ,
g ∈ arg minḡXE(ḡ,A(x), t).

This is achieved by the following objective function:

min
A,g

∑
t∈T

XE(g,A(x), t)

s.t.g ∈ arg minḡXE(ḡ,A(x), t), ∀t ∈ T ,
(A15)



where the definition of XE is given in Section 3.2. In-
tuitively, this objective optimizes the empirical risk mini-
mization (ERM) representation A(x) subject to an invari-
ant representation. However, this is a complex bi-level opti-
mization problem, where each constraint corresponds to an
inner-loop optimization. Therefore, [2] proposes a practi-
cal objective for approximation given in Eq. (5), i.e.,

min
A,g

∑
t∈T

XE(g,A(x), t) + λ‖∇w=1.0XE(w,A(x), t)‖2
2.

(A16)
In this paper, we exactly use Eq. (A16) for the Invariant
Loss in Eq. (7), but for that in Eq. (6), we follow a more
practical version [16] of Eq. (A16). Specifically, different
linear classifier Wt is initialized for each data split t. The
causal feature should be stable across splits. Therefore, the
classifiers Wt are encouraged to converge to a common ma-
trix, leading to a more practical version to replace the gra-
dient penalty of Eq. (A16):

min
A,{Wt}mt=1

∑
t∈T

XE(Wt,A(x), t) + λVar
t

(Wt), (A17)

where Var
t

(Wt) controls the variance of classifier weights:

Var
t

(Wt) = (1/m)
∑
t

(||Wt −W||2/||Wt||1)2, (A18)

where W is the arithmetic mean of Wt over t. During test-
ing, we use W as classifier g to make the causal prediction
g(A(x)). Based on this invariant loss, we futher design a
novel complementary attention to disentangle causal rep-
resentation and adversarial training pipeline to update data
partition.

A.3.2. Details of Adversarial Training

Mini-Game. The Mini-Game (Eq. (6)) can be further di-
vided into 2 sub-steps. The first is the intervention training:

min
A,A,f,g

XE(f, x̃,D) + IL(g,A(x), T ). (A19)

Then after achiving the confounder feature A(x), we ex-
plicitly trains a biased classifier h using the confounding
feature A(x) and the original label y. To achieve this, we
fix A and optimize h by minimizing the CE loss:

min
h

XE(h,A(x),D). (A20)

The Eq. (A19) and Eq. (A20) constitute the Mini-Game.
Maxi-Game. The core of Maxi-Game is to optimize
Eq. (7), i.e., maximizing the IL loss to update the partition
Ti:

max
θ

IL(h,A(x), Ti(θ)). (A21)

We have introduced in the main paper that we define a
set of optimizable parameters θ ∈ RK×m. Each param-
eter θp,q stores the current probability of the p-th sample

belonging to the q-th split (tq ∈ Ti). Ti(θ) is obtained
by assign each data sample to the split index with largest
probability. However, this process contains the argmax
function which is not continuous in the backward pass. In
this paper we use the Gumbel-Softmax [10] trick to relax
the discrete sampling operation. Specifically, consider a k-
dimensional categorical probabilities π1, ..., πk. The sam-
ple y = (y1, ..., yk) is given by:

yv =
exp ((log (πv) + µv) /τ)∑k
j=1 exp ((log (πj) + µj) /τ)

(A22)

where τ = 1.0 is a temperature parameter. µv =
− log (− log (uv)) and uv ∼ Uniform(0, 1). Here µv is
named Gumbel Noise, perturbs each log(πv) term so that
taking the original argmax becomes equivalent to drawing
a sample from the distribution π1, ..., πk. Moreover, to fa-
cilitate dataset grouping, the hard sample is needed. There-
fore, we further adopt the Straight-Through (ST) Gumbel-
Softmax [4, 10]. In the forward pass, it discretizes a con-
tinuous probability vector y sampled from the Gumbel-
Softmax distribution into the one-hot vector yST , where:

ySTv =

{
1 v = arg maxj yj

0 otherwise
(A23)

And in the backward pass it simply uses the continuous y,
thus the loss signal is still able to backpropagate.
Initialization. For initialization, we train a bias model h,A
with the conventional cross entropy loss and assume this
model is overfitted to some extent of confounding effects.
Then we can get the initial T0 by replacing h,Awith h0,A0

in the Maxi-Game Eq. (A21). That means, we initialize the
confounder representation with h0(A0(x)).

The overall training pipeline is summarized in Algo-
rithm 1.

Algorithm 1 Adversarial CaaM Training
1: Input: Dataset D
2: Output: A,A, θ
3: Initialize split assignment θ0, T0 with Eq. (A12)
4: Initialize f, g, h,A,A
5: for i ∈ {1, 2, ..., N} do
6: for each x ∈ D do
7: ci ← Ai(x)
8: si ← Ai(x)
9: end for

10: Update fi, gi, hi,Ai,Ai with Eq. (A19), Eq. (A20)
and Ti; {// Mini-Game}

11: Update θi, Ti with Eq. (A21); {// Maxi-Game}
12: until end
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Figure A1. Plot of context class index against its corresponding
ratio under various imbalance ratio (IR).

A.4. Experimental Details

A.4.1. NICO Dataset

In our experiment, we selected a subset of NICO ani-
mal dataset [9] as a challenging benchmark to test OOD
robustness for proposed CaaM and baselines. Specifically,
images in NICO are labeled with a context class (e.g., “on
grass”), besides the object class (e.g., “dog”). As discussed
in section 4.1, during training we chose 7 context classes
(Long-Tailed Contexts as shown in Table A1) for each ob-
ject class. Next, we formed a long-tailed training dataset by
selecting part of the images in each context class with mul-
tiplying a ratio. In particular, the ratio for w-th context class
(w ∈ {0, . . . , 6}) is given by

ratio = IRw/6, (A24)

where IR is a hyper-parameter that denotes the imbalance
ratio. The effect of IR on ratio is shown in Figure A1 —
lower ratio leads to the harder OOD problem. In the main
paper we keep IR = 0.02. During testing, the number of
test samples across the 7 context classes is balanced, i.e.,
50 samples per context. Moreover, we added 3 zero-shot
context classes for each object class as shown in Table A1
(last three columns). These zero-shot context classes have
the larger number of test samples (100 samples per con-
text). Therefore, a model that performs well in our split
must be robust to both long-tailed and zero-shot problems
w.r.t. the context class. Figure A2 shows an example of
our constructed subset for “cat” and “dog” during training
and testing. Moreover, to constructm ground truth splits on
NICO dataset for training in “w/ H.M. T ” setting, we first
sort images in the context order and then divide them into
m equal parts.

A.4.2. ImageNet-9 Dataset

Specifically, we elaborate the construction of the proxy
context labels, respectively, for ImageNet-9 and ImageNet-
A.
Proxy Context Label for ImageNet-9. Note that there is
no ground truth context annotation in ImageNet-9 training
and testing set. Therefore, we follow [3] to obtain the proxy
ground truth context labels using texture feature cluster-
ing. Specifically, we extract the texture features from im-
ages by computing the gram matrices of low-layer feature
maps [7, 11] from relu1 2 of the ImageNet pre-trained
VGG16 [15]. Then we run the mini-batch k-means algo-
rithm with k = m with batch size 1024, m is the number
of data splits. For the construction of the unbias test set, we
follow [3] to set k = 9 with batch size 1024. The clustering
examples are shown in Figure A3 (left).
ImageNet-A. ImageNet-A is a dataset of natural adver-
sarial examples for ImageNet classifiers, or real-world ex-
amples that fool current classifiers as shown in Figure A3
(right). The images consist of many failure modes of net-
works when “frequently appearing background elements”
become erroneous cues for recognition (e.g., a dragonfly on
a yellow metal bracket is recognised as the banana).

A.4.3. Training Details

In Mini-Game, the optimizer was set to SGD with a
learning rate of 0.05 for ResNet model; while for T2T-ViT,
the learning rate was set as 0.001 with AdamW optimizer
following ViT [5]. We trained the model with 200 epochs
for NICO dataset and the learning rate was decreased by 5
at 80, 120, 160 epoch. While for ImageNet-9 we trained for
120 epochs with learning rate decreased by 5 at 50, 80, 100
epoch. For the bias classifier fitting Eq. (A20) and the Maxi-
Game Eq. (A21), we trained each for 100 epochs with early
stopping (accuracy no longer increases more than 5 epoch).
The optimizer was set to SGD with learning rate as 0.1. For
Mini-Game, λ in invariant loss was set to 5e4 or 5e5 follow-
ing previous paper [16]. In Maxi-Game, λ is fixed to 1e6.
N was set from 5 to 20. In Table (2), for results in first two
row (Num L. and Num S.), we did not use the adversarial
training. The default M was 2 for CNN-CaaM and 4 for
ViT-CaaM, while the default m was set to 4.

A.4.4. Attention Accuracy (Q3)

In the question 3 of the main paper, we calculate the at-
tention accuracy for proposed method and its comparisons
to quantify the robustness of CaaM attention on ImageNet
dataset. Here we detail how to compute. Given an Image,
we can obtain its attention map with different architectures.
Specifically, for ResNet+CBAM, we take the CAM activa-
tion [20] as the attention map following the original CBAM
paper [17]. While for T2T-ViT, we use the Attention Roll-
out [1] following original ViT [5]. Briefly, we averaged at-



Class
Context

Long-Tailed Contexts Zero-shot Contexts

Dog on grass in water in cage eating on beach lying running at home in street on snow
Cat on snow at home in street walking in river in cage eating in water on grass on tree
Bear in forest black brown eating grass in water lying on snow on ground on tree white

Sheep eating on road walking on snow on grass lying in forest aside people in water at sunset
Bird on ground in hand on branch flying eating on grass standing in water in cage on shoulder
Rat at home in hole in cage in forest in water on grass eating lying on snow running

Horse on beach aside people running lying on grass on snow in forest at home in river in street
Elephant in zoo in circus in forest in river eating standing on grass in street lying on snow

Cow in river lying standing eating in forest on grass on snow at home aside people spotted
Monkey sitting walking in water on snow in forest eating on grass in cage on beach climbing

Table A1. Construction of our NICO [9] subset for OOD multi-classification . Context denotes the context class name, while Class
represents the object class name. “Long-Tailed Contexts” is the training contexts arranged by the sample number order (from more to less)
and “Zero-shot Contexts” represents the context labels only appear in testing rather than training.
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Figure A2. We list the sample images of each context class using “Dog” and “Cat” as the example in our constructed NICO dataset. Train,
Test and ZS-Test denote samples for training, testing and zero shot testing respectively. Note that there is no overlap between training and
testing images.

tention weights of T2T-ViT across all heads and then re-
cursively multiplied the weight matrices of all layers. This
accounts for the mixing of attention across tokens through
all layers. Having the ground truth object location bounding
box annotationB and the attention mapAwhich is a weight
matrix of image size, we can then compute the attention ac-
curacy by:

Att. Acc. =
sum((A ∩B) > σ)

sum(A > σ)
, (A25)

whereA∩B denotes the attention map area in the bounding
box and σ = 0.9 is the threshold. This function is similar
to the Intersection over Union (IoU) score metric in object
detection.

A.4.5. Additional Results

Complexities. We show the model sizes and the computa-
tional costs in Table A2. We can see that compared to base-
line models ResNet18+CBAM and T2T-ViT7, using CaaM
adds a small number of network parameters (overhead).
This is because the complementary attention in CaaM does
not rely on new network layers. In terms of computing
speed, single-layer CaaM has the comparable Flops and
MACs to baseline models. Multi-layer CaaM has linearly-
increased Flops and MACs with respect to the number of
layers, while the maximum costs are tolerable.

Visualizations. In Figure A4 and Figure A5, we sup-
plement more visualization results for several comparable
methods: our CaaM (unsupervised, i.e., without using the
labels of partition T ), an intervention method [16] (super-
vised, i.e., using T ), and a convention attention method
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(a) ImageNet-9 Clustering Results (b) ImageNet-A

Figure A3. The examples of the clustering results of ImageNet-9 dataset and the samples of ImageNet-A dataset.
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Figure A4. The attention activation maps based on CNN on NICO dataset. “Attention” and “Interv.” denote the conventional attention
model and intervention method [16] respectively. Red and Green text denote the false and correct prediction followed by the prediction
confidence.

Models Params (M) Flops (G) MACs (G)
ResNet18 [8] 11.18 3.63 1.81
ResNet18+CBAM [17] 11.27 3.64 1.82
ResNet18+CaaM 11.29 3.64 1.82
ResNet18+CaaM (M=2) 11.29 4.46 2.23
ResNet18+CaaM (M=4) 11.29 5.28 2.64
T2T-ViT7 4.00 1.95 0.97
T2T-ViT7+CaaM 4.01 2.08 1.04
T2T-ViT7+CaaM (M=2) 4.01 2.20 1.10
T2T-ViT7+CaaM (M=4) 4.01 2.46 1.23

Table A2. The model size and computational cost comparison be-
tween our proposed CaaM and baseline models.

(CBAM [17] for CNN and T2T-ViT [18] for ViT). Samples
in Figure A4 are the results of CNN-based models. Samples
in Figure A5 are from ViT-based models. Both are from the
NICO dataset. For each sample, we report the heatmap of
attention, the predicted label and the corresponding proba-

bility.
In Figure A4, we can observe that 1) the conventional

attention model (the second row) produces many inaccurate
attentions on images and false predictions of object labels;
2) the intervention method (the third row) partially tackle
the problems by using the labeled partitions T ; and 3) im-
pressively, our CaaM (the forth row) achieves both more
accurate predictions and more precise attentions—mostly
focused on the object bodies. Similar results can also be
drawn from Figure A5 for methods based on ViT.

In addition to the quantitative attention accuracy results
on ImageNet-9 dataset (Table 3) in the main paper, here
we also visualize the attention map based on CNN on
ImageNet-9 biased validation set in Figure A6, denoting the
IID setting (NICO, ImageNet-9 unbiased set and ImageNet-
A are the OOD setting). Compared to convention attention
and intervention method, we can see that our CaaM can still
clearly get tighter and more explainable attention maps in
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Figure A5. The attention activation maps based on T2T-ViT on NICO dataset. “Attention” and “Interv.” denote the conventional attention
model and intervention method [16] respectively. Red and Green text denote the false and correct prediction followed by the prediction
confidence. The red dashed boxes highlight the worse attention activation for the comparisons.
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Figure A6. The attention activation maps based on CNN on
ImageNet-9 dataset. “Attention” and “Interv.” denote the conven-
tional attention model and intervention method [16] respectively.

IID setting.
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