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In this supplementary, we provide additional analy-
sis and implementation details for the proposed CorDA
method.

1. Attention Visualization
To better understand how the learned correlation mod-

ule plays a role in improving the segmentation performance,
we visualize the attention map from depth to semantics in
Figure A1. The areas shown in brighter colors indicate that
more guidance from depth is used for the final semantic pre-
diction. Certain objects including cars, sidewalks, and poles
in general attract stronger attention, which corresponds well
with the improved classes in Table 3 of the main paper. In
Figure A1, we provide four examples, where the areas with
locally increased attention (illustrated in the white squares)
improve the model performance, compared to DACS which
has no correlation learning module. An interesting observa-
tion is that sidewalk in general attracts more attention than
its easily confusable counterpart road. This could be the
source of our improvement on both classes.

2. Additional Visual Comparison
We provide further prediction examples in Figure A2 to

qualitatively compare our method CorDA with the state-of-
the-art DACS [10] as well as FDA [14]. We additionally
show the corresponding stereo depth estimates for each im-
age. Note that the pseudo depth estimates are only needed
for training and are not used for inference. Performance on
objects with strong geometric constraints such as sidewalks
are improved, compared to both DACS and FDA.

3. Code Base
To ensure a fair comparison with DACS [10], we adopted

the same code base as DACS [10] in all our experiments and
added our task feature correlation module and the pseudo-
label refinement. The task feature correlation module is
implemented based on the PadNet [13] implementation

*The corresponding author

from [11]. For the GTA-to-Cityscapes task, we apply the
initial semantic decoder after the ResNet features, and use
the initial semantic prediction as pseudo labels for the first
10% training iterations. We found that this helps the model
to learn in early stages.

4. Reproducibility with Multiple Runs

We trained our CorDA model for five times on the GTA-
to-Cityscapes task, the average performance and standard
deviation is 56.9 ± 0.5% mIoU. This is based on the per-
formance at the end of training (250k iterations) without
early stopping. In all five runs, the model performance is
significantly better than the state-of-the-art DACS’s perfor-
mance (52.1%). The reported number (56.6%) in the main
paper is from the run with median performance. We enclose
our code together with this supplementary material.

5. Details on Depth Estimation

We provide details on the generation process of the depth
estimates, which are used as pseudo depth ground truth for
Cityscapes and GTA5 in the proposed CorDA method.

5.1. Monocular Estimation

For self-supervised monocular depth estimation from
image sequences [15], the so-called source image xi is dif-
ferentiably warped into the target image xj based on camera
motion and depth, both estimated by a neural network. The
loss is calculated from the photometric error of the warped
source image xi→j and the real target image xj and is back-
propagated into the neural network for the weight update.
In this work, we follow the implementation of Godard et
al. [3]. In particular, we use a ResNet50 [4] backbone
with a U-Net [7] decoder, which is trained for 200k itera-
tions with a batch size of 4 and an initial learning rate of
1 × 10−5 for the encoder and 1 × 10−4 for the decoders.
After 150k iterations, the learning rates are decreased by
a factor of 10. In contrast to [3], we deploy an additional
ASPP module [2] with dilation rates 3, 6, and 9 between
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Figure A1. Visualization of our learned attention map. Examples are taken from the GTA-to-Cityscapes task.

Figure A2. Semantic segmentation results on GTA-to-Cityscapes. We compare our method with DACS [10] and FDA [14].



encoder and decoder for multi-scale context feature aggre-
gation, use BatchNorm [6] in the decoder for faster conver-
gence, and apply random cropping of size 512 × 512 for
data augmentation. This Monodepth2 model is trained on
the image sequences.

5.2. Stereo Estimation

The depth estimation can also be generated from stereo
pairs. In this work, we use the publicly-available stereo
estimates generated by [9, 8]. Disparity maps are first es-
timated from stereo pairs using the Semi-Global Match-
ing [5]. Camera focal length and the baseline are then used
to convert disparity to initial depth. This initial depth with
many missing values is then filled by the stereoscopic in-
painting [12] approach. The unsupervised superpixels gen-
erated by SLIC [1] are used to guide the depth filling pro-
cess. For more details of the generation process, we refer
the readers to [9]. We use it because the generated depth
is directly available for Cityscapes. However, our method is
directly compatible with other depth estimation approaches.
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