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A. More Implementation Details

Event proposal generation module based on merely cap-
tioning supervision. In Sec. 4.3, we make the following
modifications to train an event proposal generation mod-
ule without localization supervision: 1) We extend the 1D
reference point to the 2D reference point pj = (pcj , p

l
j),

where pcj , p
l
j denote the center and the length of the refer-

ence point, respectively. 2) For each decoder layer, we fix
the sampling keys in deformable attention as K = 4 evenly
spaced positions over a specified interval from pcj − 0.5plj
to pcj + 0.5plj to stabilize the network training. 3) With-
out gIOU cost in bipartite matching, it is hard to accurately
assign the target captions to event queries. We design the
caption cost to mitigate this problem. Given any ground-
truth caption Sj′ = {wj′t}

Mj′

t=1 and any event query features
q̃j , we obtain the output probabilities {ccapjj′t}

Mj′

t=1 predicted
by the captioning head with teacher forcing, where Mj′ de-
notes the caption length. The caption cost matrix is calcu-
lated by:

(Ccap)jj′ =
1

Mγ
j′

Mj′∑
t=1

log(ccapjj′t),

where γ = 2 is the modulation factor of the caption length.
The final cost matrix for bipartite matching is:

C = Ccap + αclsLcls,

where αcls = 0.5 is the balance factor.
Based on the above modification, we train PDVC light

with merely captioning loss on YouCook2. We choose the
lightweight captioning head to ease the optimization diffi-
culty. During inference, we directly use the reference points
in the last layer as the predicted proposals.

(a) Predicted Proposals on ActivityNet
Captions

(b) GT Proposals on ActivityNet Cap-
tions

(c) Predicted Proposals on YouCook2 (d) GT Proposals on YouCook2
Figure A1. The distribution of predicted proposals and ground-
truth proposals. Horizontal and vertical axes represent the normal-
ized center position and normalized length of proposals, respec-
tively. For each dataset, we report the results of 200 randomly
sampled videos on the validation set. The sub-figure (a)/(c) con-
tain 10/100 clusters with different colors, where each cluster cor-
responds to one event query.

B. Visualization

Predicted proposals. We visualize the distribution of gen-
erated proposals of PDVC in Fig. A1. For the ActivityNet
Captions dataset, ground-truth proposals are distributed
evenly across different positions and different lengths.
However, for YouCook2, the length of most ground-truth
proposals is relatively small (less than 25% of the video du-
ration). From the figure, we conclude that: 1) Each query
describes a specific mode of the proposals’ location. 2) All
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Figure A2. Dense captioning performance of PDVC on different activity classes. Activity labels are from the ActivityNet1.3 dataset [2].
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Ground Truth
e1: A man is standing in a room.
e2: He has a ball on a tennis racket.
e3: He throws the ball in the air and hits it with the racket.

e1 e2 e3
e1

e2

e3

e3

e2

e1

PDVC
e1: a man is standing on a court.
e2: a man is seen standing on a tennis court holding a tennis racket.
e3: the man then serves the ball and hits the ball.

PDVC_light
e1: he throws the ball back and forth.
e2: he is then seen spinning around and throwing a ball.
e3: he throws the ball back and forth.

MT
e1: a man is seen standing on a court holding a tennis racket.
e2: a man is standing on a court.
e3: the man serves the ball with the racket.

Ground Truth
e1: A close up of a candle is shown as well as a picture of a man praying in 
the desert.
e2: A person is then seen taking off a pair of shoes in front of him.
e3: The man sets the shots in between his legs and speaks to the camera.

e1 e2 e3
e1

e2
e3
e3

e2

e1

PDVC
e1: a close up of a piece of shoes are shown followed by a person putting a piece 
of shoes.
e2: the person is then seen putting the shoes on the ground.
e3: the man then puts the shoes on the shoes and begins to the camera.

PDVC_light
e1: a person is seen kneeling down on a table and begins to the camera.
e2: the person is then seen putting a tire on the floor and begins to the camera.
e3: the person is then shown on the floor.

MT
e1: a close up of a <unk> is shown followed by a person walking into frame
e2: the man then begins to <unk> the dog 's leg.
e3: the man then grabs a pair of <unk> and begins to <unk> the shoe.

Figure A3. Visualization of predicted dense captions. Incorrect phases are underlined in red and the correct ones in green.

queries can predict video-wide proposals with coherence
and low redundancy and generate a similar distribution with
ground truth. 3) Event queries serve as a location prior for
localization tasks, which are trained to learn location pat-
terns of events from human annotations.

Activity types. The dense captioning performance of
PDVC varies in different activity types. Fig. A2 shows the
METEOR score of PDVC with predicted/ground-truth pro-
posals on 200 activity classes. Our model seems to gen-
erate more accurate captions with activities containing dis-
tinct scene cues or large objects, like “riding bumper cars”,
“playing squash”, and “calf roping”. However, activities
that rely more on fine-grained action cues or small objects
tend to get a worse METEOR, like “doing karate”, “gar-
gling mouthwash”, and “rollerblading”. It is promising to
achieve a performance improvement to incorporate the fine-
grained object features and a more powerful action recogni-
tion model.

Temporally-localized captions. Fig. A3 shows the gen-
erated captions with their temporal locations of different
models. The captions of MT [1] are generated based on
ground-truth proposals, while PDVC light and PDVC are

with predicted proposals. For the second video, MT and
PDVC light misrecognize the shoes as a dog and a tire, re-
spectively. Instead, PDVC can generate accurate and mean-
ingful captions with predicted proposals, which verifies the
effectiveness of the proposed parallel decoding mechanism
and the captioning head with deformable soft attention.
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